0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TensorFlow和PyTorch框架的几个重要发展

jmiy_worldofai 来源:lp 2019-04-11 12:01 次阅读

我们最近看到了TensorFlow和PyTorch框架的几个重要发展。

PyTorch v1.0于2018年10月发布,与此同时,fastaiv1.0也发布了。这两个版本都标志着框架成熟度的重要里程碑。

TensorFlow 2.0 Alpha于2019年3月4日发布。它增加了新的功能和改进了用户体验。它还更紧密地集成了Keras及其高级API

方法

在本文中,我们将Keras和fastai包括在比较中,因为它们与TensorFlow和PyTorch紧密集成。

在本文中,我们不会探讨其他的深度学习框架。比如:Caffe、Theano、MXNET、CNTK、DeepLearning4J或Chainer。虽然这些框架都有各自的优点,但它们似乎都没有处于增长轨道,不太可能接近TensorFlow或PyTorch。它们也不是与这两个框架紧密耦合的。

在线求职列表变化

为了确定在当今的就业市场上哪些深度学习库是有需求的,在Indeed、LinkedIn、Monster和SimplyHired上搜索了职位列表。

搜索了“机器学习”这个词,然后是库名。因此,使用machine learning TensorFlow对TensorFlow进行了评估。由于历史比较的原因,使用了这种方法。没有machine learning的搜索不会产生明显不同的结果。搜索区域是美国。

从2019年3月的数量中减去了6个月前的数量。以下是我们的发现:

TensorFlow的增长略高于PyTorch。Keras的增长大约是TensorFlow的一半。Fastai仍然没有出现在几乎所有的工作列表中。

请注意,PyTorch在除LinkedIn以外的所有求职网站上看到的新增职位列表数量都超过了TensorFlow。还请注意,按绝对值计算,TensorFlow出现在职位列表中的数量几乎是PyTorch或Keras的三倍。

谷歌平均搜索变化

在最大的搜索引擎上进行网络搜索是衡量受欢迎程度的一个标准。我们查看了过去一年谷歌趋势的搜索历史。我们搜索了全世界对机器学习和人工智能领域的兴趣。谷歌没有提供绝对的搜索数字,但是它提供了相对的数字。

取过去6个月的平均兴趣得分,并将其与之前6个月的平均兴趣得分进行比较。

在过去的六个月中,TensorFlow的相对搜索量有所下降,而PyTorch的相对搜索量有所增长。

下图直接显示了过去一年的搜索兴趣。

Medium文章

Medium是数据科学文章和教程的流行位置。

在过去的六个月里,对其Medium网站搜索,发现TensorFlow和Keras发表的文章数量差不多。PyTorch的数量相对较少。

作为高级API,Keras和fastai在新的深度学习实践者中很受欢迎。Medium有很多教程介绍如何使用这些框架。

arXiv文章

arXiv是大多数学术深度学习文章发布的在线资源库。在过去的六个月中,使用谷歌站点搜索结果搜索了关于arXiv上每个框架的新文章。

TensorFlow有最多的新文章出现,远远超过其他网站。

GitHub

GitHub是另一个展示框架受欢迎程度的指标。我们在下面的图表中列出了stars,forks,watchers和contributors。

每个类别中,TensorFlow的GitHub活动最多。然而,就watchers和contributors的增长而言,PyTorch非常接近。此外,Fastai也看到了许多新的贡献者。

Keras的一些贡献者无疑正在TensorFlow库中对此进行研究。值得注意的是,TensorFlow和Keras都是由google人带头开发的开源产品

Quora

我们还添加了Quora话题的关注者数量,一个以前没有的新类别。

TensorFlow在过去六个月里增加了最多的新话题关注者。PyTorch和Keras的添加量都要少得多。

一旦我有了所有的数据,我们就把它合并成一个度量标准。

成长评分解析

下面是我们如何创建成长评分:

1、在0和1之间缩放所有特征;

2、聚合了在线工作列表和GitHub子类别;

3、按以下百分比加权类别;

4、将可加性分数乘以100得出可理解性;

5、将每个框架的类别得分汇总为单个增长得分。

工作列表占总分的三分之一多一点。与我们在2018年得分分析不同,我们没有包括KDNuggets使用情况调查数据(没有新数据)或书籍数(六个月内出版的不多)。

分类和最终得分:

成长评分:

TensorFlow是目前需求最多、增长最快的框架。短期内不会有任何进展。PyTorch正在迅速增长。Keras在过去的六个月里也有了很大的增长。最后,fastai从一个较低的基线开始增长。值得记住的是,它是这么多框架中最年轻的。

TensorFlow和PyTorch都是很好的学习框架

学习建议

如果你想学习TensorFlow,建议你从Keras开始。推荐这两个学习教程:

1、https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438

2、https://www.datacamp.com/courses/deep-learning-in-python

Tensorflow 2.0通过tf.keras使用Keras作为其高级API。这是一个快速入门介绍TensorFlow 2.0的方式:

https://threader.app/thread/1105139360226140160

如果你想学习PyTorch,建议从fast.ai’s MOOC :

https://course.fast.ai/

在这里你将学习深度学习基础知识,fastai和PyTorch基础知识。

TensorFlow和PyTorch的前景如何?

我一直听说人们更喜欢使用PyTorch而不是TensorFlow。PyTorch更加Python化,并且具有更加一致的API。它还有本地ONNX模型导出,可以用来加速推理。此外,PyTorch与Numpy共享许多命令,这减少了学习它的障碍。

然而,正如谷歌的首席决策智能工程师Cassie Kozyrkov所说:

TensorFlow will now have a more straightforward API, a streamlined Keras integration, and an eager execution option.

这些变化以及TensorFlow的广泛采用,应该有助于该框架在未来几年保持流行。

TensorFlow最近宣布了另一个激动人心的计划:Swift for TensorFlow。Swift是一种最初由苹果开发的编程语言。在执行和开发速度方面,Swift比Python有很多优势。Fast.ai将在部分高级MOOC中使用Swift for TensorFlow。这门语言可能一两年内都不会在黄金时段出现,但它可能比目前的深度学习框架有所改进。

https://www.tensorflow.org/swift

影响深度学习框架的另一个进步是量子计算。一台可用的量子计算机可能还需要几年的时间,但谷歌、IBM、微软和其他公司正在考虑如何将量子计算与深度学习结合起来。需要调整框架以适应这种新技术。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6073

    浏览量

    104103
  • 深度学习
    +关注

    关注

    73

    文章

    5415

    浏览量

    120476
  • tensorflow
    +关注

    关注

    13

    文章

    327

    浏览量

    60380
  • pytorch
    +关注

    关注

    2

    文章

    793

    浏览量

    12964

原文标题:哪个深度学习框架发展更快?TensorFlow还是PyTorch?

文章出处:【微信号:worldofai,微信公众号:worldofai】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TensorFlowPyTorch,“后浪”OneFlow 有没有机会

    TensorFlowPyTorch,“后浪”OneFlow 有没有机会 | 一流科技工程师成诚编者按:7月31日,一流科技在创业1300天后,他们宣布开源自研的深度学习 框架OneFlow,此前,CSDN对CEO袁进辉进行了专访
    发表于07-27 08:24

    如何安装TensorFlow2Pytorch

    如何安装 TensorFlow2 Pytorch
    发表于03-07 07:32

    在Ubuntu 18.04 for Arm上运行的TensorFlowPyTorch的Docker映像

    TensorFlowPyTorch是两个最流行的机器学习 框架。两者在 Arm 上的使用都在增加,从像 Raspberry Pi 这样的小型系统到用于服务器和高性能计算 (HPC) 的大型系统。尽管
    发表于10-14 14:25

    深度学习框架排名:TensorFlow第一,PyTorch第二

    排名是: TensorFlow5.9%,Caffe 5.4%,Theano 3.2%,Keras 2.3%,Torch 1.6%, PyTorch1%,其他0.5%
    的头像 发表于04-02 16:46 1.1w次阅读
    深度学习<b class='flag-5'>框架</b>排名:<b class='flag-5'>TensorFlow</b>第一,<b class='flag-5'>PyTorch</b>第二

    什么是张量,如何在PyTorch中操作张量?

    Kirill Dubovikov写的 PyTorchvs TensorFlow — spotting the difference比较了 PyTorchTensorFlow这两个
    的头像 发表于10-12 08:58 1.6w次阅读

    机器学习框架Tensorflow2.0的这些新设计你了解多少

    几天前, Tensorflow刚度过自己的3岁生日,作为当前最受欢迎的机器学习 框架Tensorflow在这个宝座上已经盘踞了近三年。无论是成熟的Keras,还是风头正盛的 pytorch
    的头像 发表于11-17 11:33 3087次阅读

    国产框架超越PyTorchTensorFlow

    在深度学习领域, PyTorchTensorFlow等主流 框架,毫无疑问占据绝大部分市场份额,就连百度这样级别的公司,也是花费了大量人力物力,堪堪将 PaddlePaddle 推入主流。 在这
    的头像 发表于04-09 15:11 2288次阅读
    国产<b class='flag-5'>框架</b>超越 <b class='flag-5'>PyTorch</b> 和 <b class='flag-5'>TensorFlow</b>?

    PyTorch1.8和Tensorflow2.5该如何选择?

    自深度学习重新获得公认以来,许多机器学习 框架层出不穷,争相成为研究人员以及行业从业人员的新宠。从早期的学术成果 Caffe、Theano,到获得庞大工业支持的 PyTorchTensorFlow
    的头像 发表于07-09 10:33 1424次阅读

    TensorFlowPyTorch的实际应用比较

    TensorFlowPyTorch是两个最受欢迎的开源深度学习 框架,这两个 框架都为构建和训练深度学习模型提供了广泛的功能,并已被研发社区广泛采用。但是作为用户,我们一直想知道哪种
    的头像 发表于01-14 11:53 2735次阅读

    深度学习框架PyTorchTensorFlow如何选择

    在 AI 技术兴起后,深度学习 框架 PyTorchTensorFlow两大阵营似乎也爆发了类似的「战争」。这两个阵营背后都有大量的支持者,并且他们都有充足的理由来说明为什么他们所喜欢的
    发表于02-02 10:28 953次阅读

    深度学习框架pytorch介绍

    深度学习 框架 pytorch介绍 PyTorch是由Facebook创建的开源机器学习 框架,其中 TensorFlow是完全基于数据流图的。它是
    的头像 发表于08-17 16:10 1477次阅读

    PyTorchTensorFlow的优点和缺点

    转载自:冷冻工厂 深度学习 框架是简化人工神经网络 (ANN) 开发的 重要工具,并且其 发展非常迅速。其中, TensorFlowPyTorch
    的头像 发表于10-30 09:56 780次阅读
    <b class='flag-5'>PyTorch</b>与<b class='flag-5'>TensorFlow</b>的优点和缺点

    TensorFlowPyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个 重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度学习 框架扮演着至关 重要的角色。 TensorFlow
    的头像 发表于07-02 14:04 429次阅读

    tensorflowpytorch哪个好

    tensorflowpytorch都是非常不错的强大的 框架TensorFlow还是 PyTorch哪个更好取决于您的具体需求,以下是关于这
    的头像 发表于07-05 09:42 369次阅读

    tensorflowpytorch哪个更简单?

    PyTorch更简单。选择 TensorFlow还是 PyTorch取决于您的具体需求和偏好。如果您需要一个易于使用、灵活且具有强大社区支持的 框架Py
    的头像 发表于07-05 09:45 295次阅读