1 我们如何为自动驾驶汽车构建路径感知-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

我们如何为自动驾驶汽车构建路径感知

NVIDIA英伟达企业解决方案 来源:fqj 2019-05-16 15:38 次阅读

全新NVIDIA DRIVE Labs视频系列详细介绍了自动驾驶的构建模块,带您一探究竟NVIDIA DRIVE软件的“庐山真面目”。

Editor’s note

目前还没有任何一个开发商或公司成功创造出全自动驾驶的汽车。但我们距离这个目标越来越近了。通过全新的DRIVE Labs博客系列,我们将以工程技术为重点的视角针对每一个开放的挑战进行观察,从路径感知到交叉路口处理,我们将介绍NVIDIA DRIVE AV软件团队如何应对问题并创建安全可靠的自动驾驶软件。

DRIVE Labs系列视频第一集:

我们如何为自动驾驶汽车构建路径感知

任务:通过多样性和冗余建立路径感知可靠性

方法:路径感知集成

在行驶期间,相信自动驾驶汽车能够利用数据感知并选择正确的行驶路径至关重要。我们将此种信任称之为路径感知可靠性。

对于L2+级自动驾驶系统来说,例如NVIDIA DRIVE AP2X平台,实时评估路径感知可靠性意味着评估该系统是否知道何时进行安全的自主操作,以及何时应该将操作权移交给人类驾驶员。

为了验证路径感知的可靠性,我们在硅谷全长50英里的高速公路环路上完成了一次零干预的全自动驾驶。这意味着自动驾驶系统可以自主处理高速公路交叉路况,车道变化,避免驶入错误出口,甚至在曲率较大的路面以及车道标记有限的情况下也能让汽车保持在正确的车道内行驶。所有这些操作都应当以让人类驾驶员感到平稳舒适的方式进行。

测试的实时性是挑战的关键所在。在离线测试中,比如分析预先录制好的镜头,我们始终可以将路径感知信号与理想的参数进行对比。然而,当信号在行驶的汽车中实况运行时,我们无法从地面实况数据中获益。

因此,在实况测试中,如果汽车仅在一种路径感知信号下行驶,则无法保证置信度的实时正确性。此外,如果唯一的路径感知输入失败,自动驾驶功能也许会失灵;就算功能不失灵,也可能导致操作的舒适度和平稳度有所降低。

从独立网络到路径感知集成

为了建立实时的置信度,我们在路径感知软件中引入了多样性和冗余。

我们将几种不同的路径感知信号进行组合,包括三种不同的深度神经网络输出,以及作为选择之一的高清地图。事实上,不同类型的信号带来了多样性;同时,它们又都在感知可行驶的路径,于是就创造了冗余。

由各种深度神经网络(DNN)产生的路径感知信号在很大程度上是相互独立的。 这是因为各种DNN在训练数据,编码,模型架构和训练输出方面都是完全不同的。

高置信度路径感知集成示例(包括左车道,汽车所在车道以及右车道的中心路径)。高置信度的结果在可视化中呈现出粗的绿色中心路径线条。实心的白色线代表车道预测线,也是由集成计算得出。

通过训练,各种不同的DNN可以针对不同情况进行预测。例如,我们的LaneNet DNN可以预测车道线路。无论是否存在车道线路,PathNet DNN都可以预测能够定义可行驶路径的范围。PilotNet DNN能够根据人类驾驶员的驾驶轨迹预测驾驶中心路径。

我们通过集成技术将不同路径感知的输出结合在一起。它是一种机器学习方法,该方法结合了几种基本模型并创建了一个最佳预测模型。

通过对不同路径感知信号的一致及不一致情况的分析,我们建立并测量了汽车在实况驾驶中的路径感知可靠性,获得了更高质量的整体结果。

该分析通过可视化的方式进行呈现。当信号分量非常一致时,表示指定中心路径预测的粗线将会呈现出绿色;而当它们不一致时,则会变成红色。

由于我们的方法基于多样性,因此出现系统级故障的可能性较小。从安全角度来看,这是非常有益的。

可靠驾驶

利用多样性和冗余创建的路径感知可靠性能够使我们对所有潜在路径进行评估,包括车辆所处车道以及车辆左右车道的中心路径及车道线预测,变道、分道及并道,以及遇到障碍物时的车道分配。

在驾驶期间,多个路径感知DNN与障碍物感知和追踪功能一起在车内运行。 为了同时运行这些任务以保证自动驾驶车辆的安全,高性能计算显得尤为重要。

路径感知集合软件功能将在NVIDIA DRIVE Software 9.0中发布。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英伟达
    +关注

    关注

    22

    文章

    3770

    浏览量

    90980
  • 自动驾驶
    +关注

    关注

    784

    文章

    13784

    浏览量

    166375

原文标题:DRIVE Labs系列视频第一集:我们如何为自动驾驶汽车构建路径感知

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆
    的头像 发表于 11-22 15:07 875次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的数据标注类别分享

    标贝科技:自动驾驶中的数据标注类别分享

    自动驾驶训练模型的成熟和稳定离不开感知技术的成熟和稳定,训练自动驾驶感知模型需要使用大量准确真实的数据。据英特尔计算,L3+级自动驾驶每辆
    的头像 发表于 11-22 14:58 253次阅读
    标贝科技:<b class='flag-5'>自动驾驶</b>中的数据标注类别分享

    MEMS技术在自动驾驶汽车中的应用

    MEMS技术在自动驾驶汽车中的应用主要体现在传感器方面,这些传感器为自动驾驶汽车提供了关键的环境感知和数据采集能力。以下是对MEMS技术在
    的头像 发表于 11-20 10:19 314次阅读

    自动驾驶汽车安全吗?

    随着未来汽车变得更加互联,汽车逐渐变得更加依赖技术,并且逐渐变得更加自动化——最终实现自动驾驶,了解自动驾驶
    的头像 发表于 10-29 13:42 502次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b>安全吗?

    聊聊自动驾驶离不开的感知硬件

    自动驾驶飞速发展,绕不开感知、决策和控制决策的经典框架,而感知作为自动驾驶汽车“感官”的重要组成部分,决定了
    的头像 发表于 08-23 10:18 473次阅读

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术中不可或缺的一部分。以下是FPGA在自动驾驶
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    是FPGA在自动驾驶领域的主要应用: 一、感知算法加速 图像处理:自动驾驶中需要通过摄像头获取并识别道路信息和行驶环境,这涉及到大量的图像处理任务。FPGA在处理图像上的运算速度快,可并行性强,且功耗
    发表于 07-29 17:09

    自动驾驶汽车如何识别障碍物

    自动驾驶汽车识别障碍物是一个复杂而关键的过程,它依赖于多种传感器和技术的协同工作。这些传感器主要包括激光雷达(LiDAR)、雷达、摄像头以及超声波雷达等,它们各自具有不同的工作原理和优势,共同为自动驾驶
    的头像 发表于 07-23 16:40 1148次阅读

    自动驾驶汽车传感器有哪些

    自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对
    的头像 发表于 07-23 16:00 2292次阅读

    揭秘自动驾驶:未来汽车的感官革命,究竟需要哪些超级传感器?

    来源:LANCI澜社汽车,谢谢 编辑:感知芯视界 Link 随着自动驾驶技术的发展,我们已进入一个技术瓶颈期。在这一背景下,汽车制造商开始将
    的头像 发表于 05-31 09:14 582次阅读

    未来已来,多传感器融合感知自动驾驶破局的关键

    驾驶的关键的是具备人类的感知能力,多传感器融合感知正是自动驾驶破局的关键。昱感微的雷视一体多传感器融合方案就好像一双比人眼更敏锐的眼睛,可以为自动驾
    发表于 04-11 10:26

    大众汽车和Mobileye加强自动驾驶合作

    美国智能驾驶芯片巨头Mobileye与大众汽车集团近日宣布,在自动驾驶领域深化合作,共同推动全新自动驾驶功能在大众旗下量产车型的应用。Mobileye依托其领先的Mobileye
    的头像 发表于 03-22 11:46 919次阅读

    自动驾驶汽车技术 | 车载雷达系统

    自动驾驶汽车技术 | 车载雷达系统
    的头像 发表于 03-20 08:09 3054次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>汽车</b>技术 | 车载雷达系统

    自动驾驶发展问题及解决方案浅析

    随着科技的飞速进步,自动驾驶汽车已经从科幻概念逐渐转变为现实。然而,在其蓬勃发展的背后,自动驾驶汽车仍面临一系列亟待解决的问题和挑战。本文将对这些问题进行深入的剖析,并提出相应的解决方
    的头像 发表于 03-14 08:38 1130次阅读

    自动驾驶感知算法提升处理策略

    现代自动驾驶系统的特点是按顺序排列的模块化任务,传统的方法是基于标准的感知-规划-控制这种序列式架构的主流处理方式。即首先将感知信息处理成人类可以理解的语义信息和道路交通信息,然后基于常态化知识
    的头像 发表于 12-28 09:56 991次阅读
    <b class='flag-5'>自动驾驶</b><b class='flag-5'>感知</b>算法提升处理策略