算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(nlogn) 次比较。在最坏状况下则需要Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(nlogn) 算法更快,因为它的内部循环(innerloop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1. 从数列中挑出一个元素,称为「基准」(pivot),
2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
堆排序的平均时间复杂度为Ο(nlogn)。
算法步骤:
1. 创建一个堆 H[0..n-1]
2. 把堆首(最大值)和堆尾互换
3. 把堆的尺寸缩小 1,并调用 shift_down(0), 目的是把新的数组顶端数据调整到相应位置
4. 重复步骤 2,直到堆的尺寸为 1
算法三:归并排序
归并排序(Mergesort,***译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。
算法步骤:
1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4. 重复步骤 3 直到某一指针达到序列尾
5. 将另一序列剩下的所有元素直接复制到合并序列尾
算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn)。
算法五:BFPRT(线性查找算法)
BFPRT 算法解决的问题十分经典,即从某 n 个元素的序列中选出第 k 大(第 k 小)的元素,通过巧妙的分析,BFPRT 可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到 o(n) 的时间复杂度,五位算法作者做了精妙的处理。
算法步骤:
1. 将 n 个元素每 5 个一组,分成 n/5(上界) 组。
2. 取出每一组的中位数,任意排序方法,比如插入排序。
3. 递归的调用 selection 算法查找上一步中所有中位数的中位数,设为 x,偶数个中位数的情况下设定为选取中间小的一个。
4. 用 x 来分割数组,设小于等于 x 的个数为 k,大于 x 的个数即为 n-k。
5. 若 i==k,返回 x;若 i
终止条件:n=1 时,返回的即是 i 小元素。
算法六:DFS(深度优先搜索)
评论
查看更多