Linux内核同步机制mutex
mutex锁概述
在linux内核中,互斥量mutex是一种保证CPU串行运行的睡眠锁机制。和spinlock类似,都是同一个时刻只有一个线程进入临界资源,不同的是,当无法获取锁的时候,spinlock原地自旋,而mutex则是选择挂起当前线程,进入阻塞状态。所以,mutex无法在中断上下文中使用。
mutex锁使用注意事项
- mutex一次只能有一个进程或线程持有该锁
- mutex只有它的拥有者可以释放该锁
- 不能多次释放同一把锁
- 不可以重复获取同一把锁,否则会造成死锁
- 必须使用mutex提供的专用初始化函数初始化该锁
- 不能重复初始化同一把锁
- 不能使用
memset
或memcpy
等内存处理函数初始化mutex锁 - 线程退出时要释放自己持有的所有mutex锁
- 不能用于设备中断或软中断上下文中
mutex锁结构体定义
- owner:记录mutex的持有者
- wait_lock:spinlock自旋锁
- soq:MCS锁队列,用于支持mutex乐观自旋机制
- wait_list:当无法获取锁的时候挂起在此
- magic:用于debug调试
- dep_map:用于debug调试
struct mutex {
atomic_long_t owner;
spinlock_t wait_lock;
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
struct optimistic_spin_queue osq; /* Spinner MCS lock */
#endif
struct list_head wait_list;
#ifdef CONFIG_DEBUG_MUTEXES
void *magic;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
};
mutex锁主要接口函数
mutex_init | 初始化mutex对象 |
---|---|
__mutex_init | mutex_init会调用此函数 |
DEFINE_MUTEX | 静态定义并初始化一个mutex对象 |
__MUTEX_INITIALIZER | DEFINE_MUTEX会调用此函数 |
mutex_lock | 获取mutex锁,失败进程进入D状态 |
mutex_lock_interruptible | 获取mutex锁,失败进入S状态 |
mutex_trylock | 尝试获取mutex锁,失败直接返回 |
mutex_unlock | 释放mutex锁 |
mutex_is_locked | 判断当前mutex锁的状态 |
获取锁流程分析
mutex_lock()
函数调用might_sleep()
函数判断锁的状态,调用__mutex_trylock_fast()
函数尝试快速获取mutex
锁,如果失败,则调用__mutex_lock_slowpath()
函数获取mutex
锁
void __sched mutex_lock(struct mutex *lock)
{
might_sleep();
if (!__mutex_trylock_fast(lock))
__mutex_lock_slowpath(lock);
}
如果没有定义CONFIG_DEBUG_ATOMIC_SLEEP
宏,might_sleep
函数退化为 might_resched()
函数。
# define might_sleep() \\
do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
# define sched_annotate_sleep() (current- >task_state_change = 0)
#else
static inline void ___might_sleep(const char *file, int line,
int preempt_offset) { }
static inline void __might_sleep(const char *file, int line,
int preempt_offset) { }
# define might_sleep() do { might_resched(); } while (0)
# define sched_annotate_sleep() do { } while (0)
在配置了抢占式内核或者非抢占式内核的情况下,might_resched()
函数最终都是空函数。如果配置了主动抢占式内核CONFIG_PREEMPT_VOLUNTARY
,则might_resched()
函数会调用 _cond_resched()
函数来主动触发一次抢占。
#ifdef CONFIG_PREEMPT_VOLUNTARY
extern int _cond_resched(void);
# define might_resched() _cond_resched()
#else
# define might_resched() do { } while (0)
#endif
#ifndef CONFIG_PREEMPT
extern int _cond_resched(void);
#else
static inline int _cond_resched(void) { return 0; }
#endif
——cond_resched()
函数调用should_resched()
函数判断抢占计数器是否为0,如果抢占计数器为0并且设置了重新调度标记则调用preempt_schedule_common()
函数进行抢占式调度
#ifndef CONFIG_PREEMPT
int __sched _cond_resched(void)
{
if (should_resched(0)) {
preempt_schedule_common();
return 1;
}
return 0;
}
EXPORT_SYMBOL(_cond_resched);
#endif
__mutex_trylock_fast()
函数调用atomic_long_cmpxchg_acquire()
函数判断lock->owner
的值是否等于0,如果等于0,则直接将当前线程的task struct
的指针赋值给lock->owner
,表示该mutex
锁已经被当前线程持有。如果lock->owner
的值不等于0,则表示该mutex
锁已经被其他线程持有或者锁正在传递给top waiter
线程,当前线程需要阻塞等待。上面描述的操作(比较和赋值)都是原子操作,不会有任何指令插入。
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
{
unsigned long curr = (unsigned long)current;
if (!atomic_long_cmpxchg_acquire(&lock- >owner, 0UL, curr))
return true;
return false;
}
慢速获取mutex
锁的路径就是__mutex_lock_common()
函数,所谓慢速其实就是阻塞当前线程,将current task
挂入mutex
的等待队列的尾部。让所有等待mutex
的任务按照时间的先后顺序排列起来,当mutex
被释放的时候,会首先唤醒队首的任务,即最先等待的任务最先被唤醒。此外,在向空队列插入第一个任务的时候,会给mutex flag
设置上MUTEX_FLAG_WAITERS
标记,表示已经有任务在等待这个mutex
锁了。
static noinline void __sched
__mutex_lock_slowpath(struct mutex *lock)
{
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
}
static int __sched
__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
struct lockdep_map *nest_lock, unsigned long ip)
{
return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
}
static __always_inline int __sched
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
struct lockdep_map *nest_lock, unsigned long ip,
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
struct mutex_waiter waiter;
bool first = false;
struct ww_mutex *ww;
int ret;
might_sleep();
ww = container_of(lock, struct ww_mutex, base);
if (use_ww_ctx && ww_ctx) {
if (unlikely(ww_ctx == READ_ONCE(ww- >ctx)))
return -EALREADY;
}
preempt_disable();
mutex_acquire_nest(&lock- >dep_map, subclass, 0, nest_lock, ip);
if (__mutex_trylock(lock) ||
mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
/* got the lock, yay! */
lock_acquired(&lock- >dep_map, ip);
if (use_ww_ctx && ww_ctx)
ww_mutex_set_context_fastpath(ww, ww_ctx);
preempt_enable();
return 0;
}
spin_lock(&lock- >wait_lock);
/*
* After waiting to acquire the wait_lock, try again.
*/
if (__mutex_trylock(lock)) {
if (use_ww_ctx && ww_ctx)
__ww_mutex_wakeup_for_backoff(lock, ww_ctx);
goto skip_wait;
}
debug_mutex_lock_common(lock, &waiter);
debug_mutex_add_waiter(lock, &waiter, current);
lock_contended(&lock- >dep_map, ip);
if (!use_ww_ctx) {
/* add waiting tasks to the end of the waitqueue (FIFO): */
list_add_tail(&waiter.list, &lock- >wait_list);
#ifdef CONFIG_DEBUG_MUTEXES
waiter.ww_ctx = MUTEX_POISON_WW_CTX;
#endif
} else {
/* Add in stamp order, waking up waiters that must back off. */
ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
if (ret)
goto err_early_backoff;
waiter.ww_ctx = ww_ctx;
}
waiter.task = current;
if (__mutex_waiter_is_first(lock, &waiter))
__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
set_current_state(state);
for (;;) {
/*
* Once we hold wait_lock, we're serialized against
* mutex_unlock() handing the lock off to us, do a trylock
* before testing the error conditions to make sure we pick up
* the handoff.
*/
if (__mutex_trylock(lock))
goto acquired;
/*
* Check for signals and wound conditions while holding
* wait_lock. This ensures the lock cancellation is ordered
* against mutex_unlock() and wake-ups do not go missing.
*/
if (unlikely(signal_pending_state(state, current))) {
ret = -EINTR;
goto err;
}
if (use_ww_ctx && ww_ctx && ww_ctx- >acquired > 0) {
ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx);
if (ret)
goto err;
}
spin_unlock(&lock- >wait_lock);
schedule_preempt_disabled();
/*
* ww_mutex needs to always recheck its position since its waiter
* list is not FIFO ordered.
*/
if ((use_ww_ctx && ww_ctx) || !first) {
first = __mutex_waiter_is_first(lock, &waiter);
if (first)
__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
}
set_current_state(state);
/*
* Here we order against unlock; we must either see it change
* state back to RUNNING and fall through the next schedule(),
* or we must see its unlock and acquire.
*/
if (__mutex_trylock(lock) ||
(first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
break;
spin_lock(&lock- >wait_lock);
}
spin_lock(&lock- >wait_lock);
acquired:
__set_current_state(TASK_RUNNING);
mutex_remove_waiter(lock, &waiter, current);
if (likely(list_empty(&lock- >wait_list)))
__mutex_clear_flag(lock, MUTEX_FLAGS);
debug_mutex_free_waiter(&waiter);
skip_wait:
/* got the lock - cleanup and rejoice! */
lock_acquired(&lock- >dep_map, ip);
if (use_ww_ctx && ww_ctx)
ww_mutex_set_context_slowpath(ww, ww_ctx);
spin_unlock(&lock- >wait_lock);
preempt_enable();
return 0;
err:
__set_current_state(TASK_RUNNING);
mutex_remove_waiter(lock, &waiter, current);
err_early_backoff:
spin_unlock(&lock- >wait_lock);
debug_mutex_free_waiter(&waiter);
mutex_release(&lock- >dep_map, 1, ip);
preempt_enable();
return ret;
}