目前国内有关数字信号处理的教材在讲解快速傅里叶变换(FFT)时,都是以复数FFT为重点,实数FFT算法都是一笔带过,书中给出的具体实现程序多为BASIC或FORTRAN程序并且多数不能真正运行。鉴于目前在许多嵌入式系统中要用到FFT运算,如以DSP为核心的交流采样系统、频谱分析、相关分析等。本人结合自己的实际开发经验,研究了实数的FFT算法并给出具体的C语言函数,读者可以直接应用于自己的系统中。
首先分析实数FFT算法的推导过程,然后给出一种具体实现FFT算法的C语言程序,可以直接应用于需要FFT运算的单片机或DSP等嵌入式系统中。
1 倒位序算法分析
按时间抽取(DIT)的FFT算法通常将原始数据倒位序存储,最后按正常顺序输出结果X(0),X(1),...,X(k),...。假设一开始,数据在数组 float dataR[128]中,我们将下标i表示为(b6b5b4b3b2b1b0)b,倒位序存放就是将原来第i个位置的元素存放到第(b0b1b2b3b4b5b6)b的位置上去.由于C语言的位操作能力很强,可以分别提取出b6、b5、b4、b3、b2、b1、b0,再重新组合成b0、b1、b2、b3、b4、b5、b6,即是倒位序的位置。程序段如下(假设128点FFT):
/* i为原始存放位置,最后得invert_pos为倒位序存放位置 */
int b0=b1=b2=b3=b4=b5=6=0;
b0=i&0x01; b1=(i/2)&0x01; b2=(i/4)&0x01;
b3=(i/8)&0x01; b4=(i/16)&0x01; b5=(i/32)&0x01;
b6=(i/64)&0x01; /*以上语句提取各比特的0、1值*/
invert_pos=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;
大家可以对比教科书上的倒位序程序,会发现这种算法充分利用了C语言的位操作能力,非常容易理解而且位操作的速度很快。
2 实数蝶形运算算法的推导
我们首先看一下图1所示的蝶形图。
蝶形公式:
X(K) = X’(K) + X’(K+B)W PN ,
X(K+B) = X’(K) - X’(K+B) W PN
其中W PN= cos(2πP/N)- jsin(2πP/N)。
设 X(K+B) = XR(K+B) + jXI(K+B),
X(K) = XR(K) + jXI(K) ,
有:
XR(K)+jXI(K)= XR’(K)+jXI’(K)+[ XR’(K+B) + jXI’(K+B)]*[ cos(2πP/N)-jsin(2πP/N)];
继续分解得到下列两式:
XR(K)= XR’(K)+ XR’(K+B) cos(2πP/N)+ XI’(K+B) sin (2πP/N) (1)
XI(K)= XI’(K)-XR’(K+B) sin(2πP/N)+XI’(K+B)cos (2πP/N) (2)
需要注意的是: XR(K)、XR’(K)的存储位置相同,所以经过(1)、(2)后,该位置上的值已经改变,而下面求X(K+B)要用到X’(K),因此在编程时要注意保存XR’(K)和XI’(K)到TR和TI两个临时变量中。
同理: XR(K+B)+jXI(K+B)= XR’(K)+jXI’(K)- [ XR’(K+B)+jXI’(K+B)] *[ cos(2πP/N)-jsin(2πP/N)]继续分解得到下列两式:
XR(K+B)= XR’(K)-XR’(K+B) cos(2πP/N)- XI’(K+B) sin (2πP/N) (3)
XI(K+B)= XI’(K)+ XR’(K+B) sin(2πP/N)- XI’(K+B) cos (2πP/N) (4)
注意:
① 在编程时, 式(3)、(4)中的XR’(K)和 XI’(K)分别用TR和TI代替。
② 经过式(3)后, XR(K+B)的值已变化,而式(4)中要用到该位置上的上一级值,所以在执行式(3)前要先将上一级的值XR’(K+B)保存。
③ 在编程时, XR(K)和 XR’(K), XI(K)和 XI’(K)使用同一个变量。
通过以上分析,我们只要将式(1)、(2)、(3)、(4)转换成C语言语句即可。要注意变量的中间保存,详见以下程序段。
/* 蝶形运算程序段 ,dataR[]存放实数部分,dataI[]存放虚部*/
/* cos、sin函数做成表格,直接查表加快运算速度 */
TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];/*保存变量,供后面语句使用*/
dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];
评论
查看更多