
1

RTX51Tiny API 速查

目录

isr_send_signal ... 2

isr_set_ready .. 3

os_clear_signal ... 4

os_create_task ... 5

os_delete_task ... 6

os_reset_interval ... 7

os_running_task_id .. 8

os_send_signal ... 9

os_set_ready .. 10

os_switch_task ... 11

os_wait ... 12

os_wait1 ... 14

os_wait2 ... 15

说明.. 17

2

isr_send_signal

Summaty: char isr_send_signal (unsigned char task_id);

Description: The isr_send_signal function sends a signal to task task_id. If the

specified task is already waiting for a signal,this function readies the

task for execution but does not start it.Otherwise,the signal is stored

in the signal flag of the task.

 Note

A. This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

B. This function may be called only from interrupt function.

Return Value: The isr_send_signal function returns a value of 0 if successful and

-1 if the specified task does not exist.

Example: #include <rtx51tny.h>

 void tst_isr_send_signal (void) interrupt 2

 {

 isr_send_signal (8); /* signal task #8 */

}

3

isr_set_ready

Summary: char isr_set_ready (unsigned char task_id);

Description: The isr_set_ready function places the task specified by task_id into

the ready state.

 Note

A. This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

B. This function may be called only from interrupt function.

Return Value: None.

Example: #include <rtx51tny.h>

 void tst_isr_set_ready (void) interrupt 2

 {

 isr_set_ready (1); /* Set ready flag for task 1 */

}

4

os_clear_signal

Summary: char os_clear_signal (unsigned char task_id);

Description: The os_clear_signal function clears the signal flag for the task

specified by task_id.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: The os_clear_signal function returns a value of 0 if the signal was

successfully celared. A value of -1 is returned if the specified task

does not exist.

Example: #include <rtx51tny.h>

 void tst_os_clear_signal (void) _task_ 8

{

os_clear_signal (5); /* clear signal flag in task 5 */

}

5

os_create_task

Summary: char os_create_task (unsigned char task_id);

Description: The os_create_task function starts task number task_id. The task is

marked as ready and begins execution at the next available

opportunity.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: The os_create_task function returns a value of 0 if the task was

successfully started. A value of -1 is returned if the task could not be

started,if the task is already running,or if no task was defined using

the specified task_id.

Example: #include <trx51tny.h>

 #include <stdio.h>

 void new_task (void) _task_ 2

{

…

}

void tst_os_create_task (void) _task_0

{

…

if (os_create_task (2))

{

 printf (“Couldn’t start task 2\n”);

}

}

6

os_delete_task

Summary: char os_delete_task (unsigned char task_id);

Description: The os_delete_task function stops the task specified by task_id and

removes it from the task list.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: The os_delete_task function returns a value of 0 if the task was

successfully stopped and delete. A return value of -1 indicates the

specified task does not exist or has not been started.

 Note

 A task switch is performed immediately if a task deletes itself.

Example: #include <rtx51tny.h>

 #include <stdio.h>

 void tst_os_delete_task (void) _task_ 0

{

…

if (os_delete_task (2))

{

 printf (“Couldn’t stop task 2\n”);

}

}

7

os_reset_interval

Summary: void os_reset_interval (unsigned char ticks);

Description: The os_reset_interval function is used to correct timer problem that

occur when the os_wait function is used to wait for K_IVL and

K_SIG events simultaneously. In such a case, if a signal (K_SIG)

events causes os_wait to exit, the interval timer is not adjusted and

subsequent calls to os_wait (to wait for an interval) may not delay

for the required time period.

 The os_reset_interval routine allows you to reset the interal timer

so that subsequent calls to os_wait operate as expected.

Return Value: None.

Example: #include <rtx51tny.h>

 void task_func (void) _task_ 4

 {

 switch (os_wait2 (K_SIG | K_IVL, 100))

{

case TMO_EVENT:

 /* Timeout occurred */

 /* os_reset_interval not required */

 break;

case SIG_EVENT:

 /* Signal received */

 /* os_reset_interval required */

 os_reset_interval (100);

 /* do something with the signal */

 break;

}

}

8

os_running_task_id

Summary: char os_running_task_id (void);

Description: The os_running_task_id function determines the task_id of the task

currently executing.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: The os_running_task_id function retuens the task_id of the task

currently executing. This value is a number in the rang 0-15.

Example: #include <rtx51tny.h>

 void tst_os_running_task (void) _task_ 3

{

unsigned char tid;

tid = os_running_task_id (); /* tid = 3 */

}

9

os_send_signal

Summary: char os_send_signal (char task_id);

Description: The os_send_signal function sends a signal to task task_id. If the

specified task is already waiting for a signal, this function call

readies the task for execution but does not start it. Otherwise, the

signal is stored in the signal flag of the task.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: The os_send_signal function returns a value of 0 if successfully and

-1 if the specified task does not exist.

Example: #include <rts51tny.h>

 void signal_func (void) _task_ 2

{

…

os_send_signal (8); /* signal task #8 */

…

}

void tst_os_send_signal (void) _task_ 8

{

…

os_send_signal (2); /* signal task #2 */

…

}

10

os_set_ready

Summary: char os_set_ready (unsigned char task_id);

Description: The os_set_ready function places the task specified by task_id into

the ready state.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: None.

Example: #include <rtx51tny.h>

{

…

os_set_ready (1); /* Set ready flag for task #1 */

…

}

11

os_switch_task

Summary: char os_switch_task (void);

Description: The os_awitch_task function allows a task to halt execution and

allow another task to run. If the task calling os_swith_task is the

only ready for execution it resumes running immediately.

 Note

This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

Return Value: None.

Example: #include <rtx51tny.h>

 #include <stdio.h>

 void long_job (void) _task_ 1

{

float f1, f2;

f1 = 0.0;

while (1)

{

 f2 = log (f1);

 f1 += 0.0001;

 os_switch_task (); /* run other tasks */

}

}

12

os_wait

Summary: char os_wait (

 unsigned char event_sel, /* events to wait for */

 unsigned char ticks, /* timer ticks to wait */

 unsigned int dummy); /* unused argument */

Description: The os_wait function halt the current task and wait for one or

several events such as a time interval, a time-out, or a signal form

another task or interrupt. The event_sel argument specifies the event

or events to wait for and can be any combination of the following

manifest constants:

 Event Description

 K_IVL Wait for the interval specified by ticks.

 K_SIG Wait for a signal

 K_TMO Wait for a time-out specified by ticks.

 --

 Events may be logically ORed using the vertical bar character (‘|’).

For example, K_TMO | K_SIG, specifies that wait for a time-out or

a signal.

 The ticks argument specifies the number of timer ticks to wait for an

interval event (K_IVL) or a time-out event (K_TMO).

 The dummy argument is provided for compatibility with RTX51

Full and is not used in RTX51 Tiny.

 Note

A. This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

B. Refer to Events for more information about K_IVL, K_TMO,

13

and K_SIG.

Return Value: When one of the specified events, the task is put in the READY state.

When the task resumes execution, the manifest constant that

identifies the event that restarted the task is returned by os_wait.

Possible return values are:

Return Value Description

RDY_EVENT The task’s ready flag was set by os_set_ready or isr_set_ready.

SIG_EVENT A signal was received.

TMO_EVENT A time-out has completed or an interval has expired.

NOT_OK The value of the event_sel argument is invalid.

Example: #include <rtx51tny.h>

 #include <stdio.h>

 void tst_os_wait (void) _task_ 9

{

while (1)

{

char event;

event = os_wait (K_SIG + K_TMO, 50, 0);

switch (event)

{

default: break; /* this never happens */

case TMO_EVENT: break; /* 50 ticks time-out */

case SIG_EVENT: break; /* signal received */

}

}

}

14

os_wait1

Summary: char os_wait1 (

unsigned char event_sel); /* events to wait for */

Description: The os_wait1 function halts the current task and waits for an event

to occur. The os_wait1 function is a subset of the os_wait function

and does not support all of the events that os_wait offers. The

event_sel argument specifies the event to wait for and may have

only the vlue K_SIG which waits for a signal.

 Note

A. This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

B. Refer to Events for more information about K_IVL, K_TMO,

and K_SIG.

Return Value: When one of the specified events, the task is put in the READY state.

When the task resumes execution, the manifest constant that

identifies the event that restarted the task is returned by os_wait1.

Possible return values are:

Return Value Description

RDY_EVENT The task’s ready flag was set by os_set_ready or isr_set_ready.

SIG_EVENT A signal was received.

NOT_OK The value of the event_sel argument is invalid.

Example: See os_wait.

15

os_wait2

Summary: char os_wait2 (

unsigned char event_sel, /* events to wait for */

unsigned char ticks); /* timer ticks to wait */

Description: The os_wait2 function halts the current task and waits for one or

several events such as a time interval, a time-out, or a signal form

another task or interrupt. The event_sel argument specifies the event

or events to wait for and can be any combination of the following

manifest constants:

 Event Description

 K_IVL Wait for the interval specified by ticks.

 K_SIG Wait for a signal

 K_TMO Wait for a time-out specified by ticks.

 --

 Events may be logically ORed using the vertical bar character (‘|’).

For example, K_TMO | K_SIG, specifies that wait for a time-out or

a signal.

 The ticks argument specifies the number of timer ticks to wait for an

interval event (K_IVL) or a time-out event (K_TMO).

 Note

A. This function is part of the RTX51 Tiny Real-Time Operating

System which is included only with the PK51 Professional

Developer’s Kit.

B. Refer to Events for more information about K_IVL, K_TMO,

and K_SIG.

Return Value: When one of the specified events, the task is put in the READY state.

When the task resumes execution, the manifest constant that

16

identifies the event that restarted the task is returned by os_wait2.

Possible return values are:

Return Value Description

RDY_EVENT The task’s ready flag was set by os_set_ready or isr_set_ready.

SIG_EVENT A signal was received.

TMO_EVENT A time-out has completed or an interval has expired.

NOT_OK The value of the event_sel argument is invalid.

Example: See os_wait.

17

说明

本文档参考 Keil自带 rtx51tiny手册

2013年 1月整理

版本 0.1

希望有人协助翻译成中文

By 若如初见

454636197@qq.com

2013.1.28 0:47

mailto:454636197@qq.com

