Big Data是近年在云计算领域中出现的一种新型数据,传统关系型数据库系统在数据存储规模、检索效率等方面不再适用.目前的分布式No-SQL数据库可以提供分布式数据存储环境,但是无法支持多列查询.设计并实现分布式海量结构化数据存储检索系统(MDSS).系统采用列存储结构,采用集中分布式B+ Tree索引和局部索引相结合的方法提高检索效率.在此基础上讨论复杂查询条件的任务分解机制,支持大数据的多属性检索、模糊检索以及统计分析等查询功能.实验结果表明,提出的分布式结构化数据管理技术和查询任务分解机制可以显著提高分布式条件下大数据集的查询效率,适合应用在日志类数据、流记录数据等海量结构化数据的存储应用场合.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉
全部0条评论
快来发表一下你的评论吧 !