1
针对高速公路传统的短时交通流预测方法适用数据规模小,全网预测效率较低,数据的时空关系被忽视等问题,提出一种结合了K近邻(KNN)模型且面向高速大数据的短时交通流预测方法。首先,对模型的K值和距离度量进行调优,利用交叉验证进行模型参数的对比实验;然后,考虑数据内在的业务时空关联,建模基于时空特性的特征向量;最后,在大数据环境下建立回归预测模型,以最优参数的模型实现预测。实验结果表明,与传统时间序列模型相比,所提方法一次可预测出全站点的流量,单次运行速度快,效率提高了77%,平均绝对百分比误差(MAPE)和绝对百分比误差中位数(MDAPE)均有明显减低,且具有良好的水平扩展性.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !