在医学图像融合过程中,传统多尺度分析方法多采用线性滤波器,由于无法保留图像边缘特征导致分解阶段的强边缘处岀现模糊,从而产生光晕。为提髙融合图像的视觉感知效果,通过结合多尺度边缘保持分解方法与脉冲耦合神经网络(PCNN),提岀一种新的图像融合方法。对源图像进行加权最小二乘滤波分解得到图像的基础层和细节层,釆用高斯滤波器对基础层进行二次分解得到低频层和边缘层,将分解过程中每级边缘层和细节层叠加构建高频层,并引入非下采样方向滤波器组进行方向分析。在此基础上,利用改进的空间频率以及区域能量激励PCNN融合高频层和低频层,通过逆变换得到最终的融合图像实验结果表明,该方法能够突出医学图像的边缘轮廓并增强图像细节,可将更多的显著特征从源图像分离并转移到融合图像中。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉
全部0条评论
快来发表一下你的评论吧 !