1
生成对抗网络近年来发展迅速,其中语义区域分割与生成模型的结合为图像生成技术研究提供了新方向。在当前的研究中,语义信息作为指导生成的条件,可以通过编辑和控制输入的语义分割掩码来生成理想的特定风格图像。文中提出了种具有语义区域风格约東的图像生成框架,利用条件对抗生成网络实现了图像分区域的自适应风格控制。具体而言,首先获得图像的语义分割图,并使用风格编码器提取岀图像中不同语乂区域的风格信息;然后,在生成端将风格信息和语义掩码对应生成器中的每个残差块分别仿射变换为两组调制参数;最后,输入到生成器中的语义特征图根据毎个残差块的调制参数加权求和,并通过卷积与上采样渐进式地生成目标风格内容,从而有效地将语义信息和风格信息相结合,得到最终的目标风格内容针对现有模型难以精准控制各语义区堿风格的问题,文中设计了新的风格约朿损失,在语义层次上约束区域风格变化,减小不同语义区域的风格编码之间的相亞影响;另外,在不影响性能的前提下,采取权重量化的方式,将生成器的参数存储规模压缩为原来的15.6%,有效降低了模型的存储空间消耗。实验结果表明,所提模型的生成质量在主观感受和客观指标上较现有方法均有显著提高,其中FⅠ分数比当前最优模型提升了约3.8%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !