1 一文了解人工智能的概念元素资料下载-德赢Vwin官网 网
×

一文了解人工智能的概念元素资料下载

消耗积分:10 | 格式:pdf | 大小:497.41KB | 2021-04-18

麻酱

分享资料个

人工���能的发展曾经经历过几次起起伏伏,近来在深度学习技术的推动下又迎来了一波新的前所未有的高潮。近日,IBM 官网发表了一篇概述文章,对人工智能技术的发展过程进行了简单梳理,同时还图文并茂地介绍了感知器、聚类算法、基于规则的系统、机器学习、深度学习、神经网络等技术的概念和原理。 人类对如何创造智能机器的思考从来没有中断过。期间,人工智能的发展起起伏伏,有成功,也有失败,以及其中暗藏的潜力。今天,有太多的新闻报道是关于机器学习算法的应用问题,从癌症检查预测到图像理解、自然语言处理,人工智能正在赋能并改变着这个世界。 现代人工智能的历史具备成为一部伟大戏剧的所有元素。在最开始的 1950 年代,人工智能的发展紧紧围绕着思考机器和焦点人物比如艾伦·图灵、冯·诺伊曼,迎来了其第一次春天。经过数十年的繁荣与衰败,以及难以置信的高期望,人工智能及其先驱们再次携手来到一个新境界。现在,人工智能正展现着其真正的潜力,深度学习、认知计算等新技术不断涌现,且不乏应用指向。 本文探讨了人工智能及其子领域的一些重要方面。下面就先从人工智能发展的时间线开始,并逐个剖析其中的所有元素。 现代人工智能的时间线 1950 年代初期,人工智能聚焦在所谓的强人工智能,希望机器可以像人一样完成任何智力任务。强人工智能的发展止步不前,导致了弱人工智能的出现,即把人工智能技术应用于更窄领域的问题。1980 年代之前,人工智能的研究一直被这两种范式分割着,两营相对。但是,1980 年左右,机器学习开始成为主流,它的目的是让计算机具备学习和构建模型的能力,从而它们可在特定领域做出预测等行为。 图 1:现代人工智能发展的时间线 在人工智能和机器学习研究的基础之上,深度学习在 2000 年左右应运而生。计算机科学家在多层神经网络之中使用了新的拓扑学和学习方法。最终,神经网络的进化成功解决了多个领域的棘手问题。 在过去的十年中,认知计算(Cognitive computing)也出现了,其目标是打造可以学习并与人类自然交互的系统。通过成功地击败 Jeopardy 游戏的世界级选手,IBM Watson 证明了认知计算的价值。 在本文中,我将逐一探索上述的所有领域,并对一些关键算法作出解释。 基础性人工智能 1950 年之前的研究提出了大脑是由电脉冲网络组成的想法,正是脉冲之间的交互产生了人类思想与意识。艾伦·图灵表明一切计算皆是数字,那么,打造一台能够模拟人脑的机器也就并非遥不可及。 上文说过,早期的研究很多是强人工智能,但是也提出了一些基本概念,被机器学习和深度学习沿用至今。 图 2:1950 - 1980 年间人工智能方法的时间线 人工智能搜索引擎 人工智能中的很多问题可以通过强力搜索(brute-force search)得到解决。然而,考虑到中等问题的搜索空间,基本搜索很快就受影响。人工智能搜索的最早期例子之一是跳棋程序的开发。亚瑟·塞缪尔(Arthur Samuel)在 IBM 701 电子数据处理机器上打造了第一款跳棋程序,实现了对搜索树(alpha-beta 剪枝)的优化;这个程序也记录并奖励具体行动,允许应用学习每一个玩过的游戏(这是首个自我学习的程序)。为了提升程序的学习率,塞缪尔将其编程为自我游戏,以提升其游戏和学习的能力。 尽管你可以成功地把搜索应用到很多简单问题上,但是当选择的数量增加时,这一方法很快就会失效。以简单的一字棋游戏为例,游戏一开始,有 9 步可能的走棋,每 1 个走棋有 8 个可能的相反走棋,依次类推。一字棋的完整走棋树包含 362,880 个节点。如果你继续将这一想法扩展到国际象棋或者围棋,很快你就会发展搜索的劣势。 感知器 感知器是单层神经网络的一个早期监督学习算法。给定一个输入特征向量,感知器可对输入进行具体分类。通过使用训练集,网络的权重和偏差可为线性分类而更新。感知器的首次实现是 IBM 704,接着在自定义硬件上用于图像识别。 图 3:感知器与线性分类 作为一个线性分类器,感知器有能力解决线性分离问题。感知器局限性的典型实例是它无法学习专属的 OR (XOR) 函数。多层感知器解决了这一问题,并为更复杂的算法、网络拓扑学、深度学习奠定了基础。 聚类算法 使用感知器的方法是有监督的。用户提供数据来训练网络,然后在新数据上对该网络进行测试。聚类算法则是一种无监督学习(unsupervised learning)方法。在这种模型中,算法会根据数据的一个或多个属性将一组特征向量组织成聚类。 图 4:在一个二维特征空间中的聚类 你可以使用少量代码就能实现的最简单的聚类算法是 k-均值(k-means)。其中,k 表示你为样本分配的聚类的数量。你可以使用一个随机特征向量来对一个聚类进行初始化,然后将其它样本添加到其最近邻的聚类(假定每个样本都能表示一个特征向量,并且可以使用 Euclidean distance 来确定「距离」)。随着你往一个聚类添加的样本越来越多,其形心(centroid,即聚类的中心)就会重新计算。然后该算法会重新检查一次样本,以确保它们都在最近邻的聚类中,最后直到没有样本需要改变所属聚类。 尽管 k-均值聚类相对有效,但你必须事先确定 k 的大小。根据数据的不同,其它方法可能会更加有效,比如分层聚类(hierarchical clustering)或基于分布的聚类(distribution-based clustering)。 决策树 决策树和聚类很相近。决策树是一种关于观察(observation)的预测模型,可以得到一些结论。结论在决策树上被表示成树叶,而节点则是观察分叉的决策点。决策树来自决策树学习算法,其中数据集会根据属性值测试(attribute value tests)而被分成不同的子集,这个分割过程被称为递归分区(recursive partitioning)。 考虑下图中的示例。在这个数据集中,我可以基于三个因素观察到某人是否有生产力。使用一个决策树学习算法,我可以通过一个指标来识别属性(其中一个例子是信息增益)。在这个例子中,心情(mood)是生产力的主要影响因素,所以我根据 Good Mood 一项是 Yes 或 No 而对这个数据集进行了分割。但是,在 Yes 这边,还需要我根据其它两个属性再次对该数据集进行切分。表中不同的颜色对应右侧中不同颜色的叶节点。 图 5:一个简单的数据集及其得到的决策树 决策树的一个重要性质在于它们的内在的组织能力,这能让你轻松地(图形化地)解释你分类一个项的方式。流行的决策树学习算法包括 C4.5 以及分类与回归树(Classification and Regression Tree)。 基于规则的系统 最早的基于规则和推理的系统是 Dendral,于 1965 年被开发出来,但直到 1970 年代,所谓的专家系统(expert systems)才开始大行其道。基于规则的系统会同时存有所需的知识的规则,并会使用一个推理系统(reasoning system)来得出结论。 基于规则的系统通常由一个规则集合、一个知识库、一个推理引擎(使用前向或反向规则链)和一个用户接口组成。下图中,我使用了知识「苏格拉底是人」、规则「如果是人,就会死」以及一个交互「谁会死?」 图 6:基于规则的系统 基于规则的系统已经在语音识别、规划和控制以及疾病识别等领域得到了应用。上世纪 90 年代人们开发的一个监控和诊断大坝稳定性的系统 Kaleidos 至今仍在使用。 机器学习 机器学习是人工智能和计算机科学的一个子领域,也有统计学和数学优化方面的根基。机器学习涵盖了有监督学习和无监督学习领域的技术,可用于预测、分析和数据挖掘。机器学习不限于深度学习这一种。但在这一节,我会介绍几种使得深度学习变得如此高效的算法。 图 7:机器学习方法的时间线 反向传播 神经网络的强大力量源于其多层的结构。单层感知器的训练是很直接的,但得到的网络并不强大。那问题就来了:我们如何训练多层网络呢?这就是反向传播的用武之地。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"//www.hzfubeitong.com/m/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="https://m.elecfans.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'一文了解人工智能的概念元素资料下载',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"//www.hzfubeitong.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);