1
遥感图像描述生成是同时涉及计算机视觉和自然语言处理领域的热门研究话题,其主要工作是对于给定的图像自动地生成一个对该图像的描述语句。文中提岀了一种基于多尺度与注意力特征増强的遥感图像描述生成方法,该方法通过软意力机制实现生成单词与图像特征之间的对齐关系。此外,针对遥感图像分辨率较高、目标尺度变化较大的特点,还提出种基于金字塔池化和通道注意力机制的特征提取网络( Pyramid Pool and Channel Attention Network,PCAN),用于捕获遥感图像多尺度以及局部跨通道交互信息。将该模型提取到的图像特征作为描述生成阶段软注意力机制的输入,通过计算得到上下文信息,然后将该上下文信息输入至LSTM网络中,得到最终的输出序列。在 RSICD与 MSCOCO数据集上对PCAN及软注意力机制进行有效性实验,结果表明,PCAN及软注意力机制的加入能够提升生成语句的质量,实现单词与图像特征之间的对齐。通过对软注意力机制的可视化分析,提高了模型结果的可信度。此外,在语义分割数据集上进行实验,结果表明所提PCAN对于语义分割任务同样具有有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !