1
视觉是人类感知世界的重要途径之一。视频显著性检测旨在通过计算杌模拟人类的视觉注意杌制,智能地检测岀视频中的显著性物体。目前,基于传统方法的视频显著性检测已经达到一定的水平,但是在时空信息一致性利用方面仍不能令人满意。因此,文中提出了一种基于全时序卷积神经网络的视频显著性检测方法。首先,利用全时序卷积对输入视频进行空间信息和时间信息的时空特征提取;然后,利用3D池化层进行降维;其次,在解码层中用3D反卷积和3D上采样对前端特征进行解马;最后,通过把时空信息有机地提取与融合,来有效地提升显著图的质量。实验结果表明,所提算法在3个广泛使用的视频显著性检测数据集ω DAVIS,FBMS, Seg track)上的性能优于当前主流的视频显著性检测方法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !