1
点云数据的分类和语义分割在自动驾驶、智能机器人、全息投影等领域中有着重要应用。传统手工提取点云特征的方式,以及将三维点云数据转化为多视图、体素网格等数据形式后再进行特征学习的方式,都存在处理环节多、三维特征损失大等问题,分类和分割的精度较低。目前可以直接处理点云数据的深度神经网络 Pointnet忽略了点云的局部细粒度特征,对复杂点云场景的处理能力较弱。针对上述问題,提出了一种基于动态图卷积和空间金字塔池化的点云深度学习网络。该网终在Pointnet的基础上使用动态图卷积模块来替换 Pointnet中的特征学习模块,増强了网络对局部拓扑结构信息的学习能力;冋同时设计了一种基于点的空间金字塔池化结构来捕获多尺度局部特征,该方式比 Pointnet十十的多尺度采样点云、重复分组进行多尺度局部特征学习的方法更加简洁高效。实验结果表明,在点云分类和语义分割任务的3个基准数据集上,所提网络相较于现有网络具有更高的分类和分割精度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !