1
我们之前说了二叉树基础及二叉的几种遍历方式及练习题,今天我们来看一下二叉树的前序遍历非递归实现。
前序遍历的顺序是, 对于树中的某节点,先遍历该节点,然后再遍历其左子树,最后遍历其右子树。
我们先来通过下面这个动画复习一下二叉树的前序遍历。
迭代遍历
我们试想一下,之前我们借助队列帮我们实现二叉树的层序遍历,
那么可不可以,也借助数据结构,帮助我们实现二叉树的前序遍历。
假设我们的二叉树为 [1,2,3]。我们需要对其进行前序遍历。其遍历顺序为
当前节点 1,左孩子 2,右孩子 3。
这里可不可以用栈,帮我们完成前序遍历呢?
栈和队列的那些事
我们都知道栈的特性是先进后出,我们借助栈来帮助我们完成前序遍历的时候。
则需要注意的一点是,我们应该先将右子节点入栈,再将左子节点入栈。
这样出栈时,则会先出左节点,再出右子节点,则能够完成树的前序遍历。
我们用一句话对上图进行总结,当栈不为空时,栈顶元素出栈,如果其右孩子不为空,则右孩子入栈,其左孩子不为空,则左孩子入栈。还有一点需要注意的是,我们和层序遍历一样,需要先将 root 节点进行入栈,然后再执行 while 循环。
看到这里你已经能够自己编写出代码了,不信你去试试。
时间复杂度:O(n) 需要对所有节点遍历一次
空间复杂度:O(n) 栈的开销,平均为 O(logn) 最快情况,即斜二叉树时为 O(n)
参考代码
class Solution {
public List《Integer》 preorderTraversal(TreeNode root) {
List《Integer》 list = new ArrayList《》();
Stack《TreeNode》 stack = new Stack《》();
if (root == null) return list;
stack.push(root);
while (!stack.isEmpty()) {
TreeNode temp = stack.pop();
if (temp.right != null) {
stack.push(temp.right);
}
if (temp.left != null) {
stack.push(temp.left);
}
//这里也可以放到前面
list.add(temp.val);
}
return list;
}
}
Morris
Morris 遍历利用树的左右孩子为空(大量空闲指针),实现空间开销的极限缩减。这个遍历方式,稍微有那么一丢丢难理解,不过结合动图,也就一目了然,下面我们先看动画吧。
看完视频,是不是感觉自己搞懂了,又感觉自己没搞懂,哈哈,咱们继续往下看。
我们之前说的,Morris 遍历利用了树中大量空闲指针的特性,我们需要找到当前节点的左子树中的最右边的叶子节点,将该叶子节点的 right 指向当前节点。例如当前节点为2,其左子树中的最右节点为 9 ,则在 9 节点添加一个 right 指针指向 2。
其实上图中的 Morris 遍历遵循两个原则,我们在动画中也能够得出。
1.当 p1.left == null 时,p1 = p1.right。(这也就是我们为什么要给叶子节点添加 right 指针的原因)
2.如果 p1.left != null,找到 p1 左子树上最右的节点。(也就是我们的 p2 最后停留的位置),此时我们又可以分为两种情况,一种是叶子节点添加 right 指针的情况,一种是去除叶子节点 right 指针的情况。
如果 p2 的 right 指针指向空,让其指向 p1,p1向左移动,即 p1 = p1.left
如果 p2 的 right 指针指向 p1,让其指向空,(为了防止重复执行,则需要去掉 right 指针)p1 向右移动,p1 = p1.right。
这时你可以结合咱们刚才提到的两个原则,再去看一遍动画,并代入规则进行模拟,差不多就能完全搞懂啦。
下面我们来对动画中的内容进行拆解 ,
首先 p1 指向 root节点
p2 = p1.left,下面我们需要通过 p2 找到 p1的左子树中的最右节点。即节点 5,然后将该节点的 right 指针指向 root。并记录 root 节点的值。
向左移动 p1,即 p1 = p1.left
p2 = p1.left ,即节点 4 ,找到 p1 的左子树中的最右叶子节点,也就是 9,并将该节点的 right 指针指向 2。
继续向左移动 p1,即 p1 = p1.left,p2 = p1.left。也就是节点 8。并将该节点的 right 指针指向 p1。
我们发现这一步给前两步是一样的,都是找到叶子节点,将其 right 指针指向 p1,此时我们完成了添加 right 指针的过程,下面我们继续往下看。
我们继续移动 p1 指针,p1 = p1.left。p2 = p.left。此时我们发现 p2 == null,即下图此时我们需要移动 p1, 但是不再是 p1 = p1.left 而是 p1 = p1.right。也就是 4,继续让 p2 = p1.left。此时则为下图这种情况
此时我们发现 p2.right != null 而是指向 4,说明此时我们已经添加过了 right 指针,所以去掉 right 指针,并让 p1 = p1.right
下面则继续移动 p1 ,按照规则继续移动即可,遇到的情况已经在上面做出了举例,所以下面我们就不继续赘述啦,如果还不是特别理解的同学,可以再去看一遍动画加深下印象。时间复杂度 O(n),空间复杂度 O(1)下面我们来看代码吧。
代码
class Solution {
public List《Integer》 preorderTraversal(TreeNode root) {
List《Integer》 list = new ArrayList《》();
if (root == null) {
return list;
}
TreeNode p1 = root; TreeNode p2 = null;
while (p1 != null) {
p2 = p1.left;
if (p2 != null) {
//找到左子树的最右叶子节点
while (p2.right != null && p2.right != p1) {
p2 = p2.right;
}
//添加 right 指针,对应 right 指针为 null 的情况
if (p2.right == null) {
list.add(p1.val);
p2.right = p1;
p1 = p1.left;
continue;
}
//对应 right 指针存在的情况,则去掉 right 指针
p2.right = null;
} else {
list.add(p1.val);
}
//移动 p1
p1 = p1.right;
}
return list;
}
}
原文标题:把二叉树揉碎(二)
文章出处:【微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。
责任编辑:haq
全部0条评论
快来发表一下你的评论吧 !