1
移动互联网和智能手机的普及大大方便了人们的生活,并由此产生了大量的轨迹数据。通过对发布的轨迹数据进行分析,能够有效提高基于位置服务的质量,进而推动智慧城市相关应用的发展,例如智能交通管理、基础设计规划以及道路拥塞预警与检测。然而,由于轨迹数据中包含用户的敏感信息,直接发布原始的轨迹数据会对个人隐私造成严重威胁。差分隐私作为一种具备严格形式化定义、强隐私性保证的安全机制,已经被广泛应用于轨迹数据的发布中。但是,现有的方法假定用户具有相同的隐私偏好,并且为所有用户提供相同级别的隐私保护,这会导致对某些用户提供的隐私保护级别不足,而某些用户则获得过多的隐私保护。为满足不同用户的隐私保护需求,提高数据可用性,本文假设用户具备不同的隐私需求,提出了一种面向轨迹数据的个性化差分隐私发布机制该机制利用 Hilbert曲线提取轨迹数据在各个时刻的分布特征,生成位置聚簇,使用抽样机制和指数机制选择各个位置聚簇的代表元,进而利用位置代袭元对原始轨迹数据进行泛化,从而生成待发布轨迹数据。在真实轨迹数据集上的实验表明,与基于标准差分隐私的方法比本文提出的机制在隐私保护和数据可用性之间提供了更好的平衡。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !