1
为了在行人检测任务中使卷积神经网络(CNN)选择出更优模型并获得定位更准确的检测框,提出一种改进的基于卷积神经网络的行人检测方法。改进主要涉及两个方面:如何决定CNN样本迭代学习次数和如何进行重合窗口的合并。首先,关于CNN样本迭代次序问题,在顺序迭代训练多个CNN分类模型的基础上,提出一种基于校验集正确率及其在迭代系列分类器中展现出的稳定性进行更优模型选择的策略,以使最终选择的分类器推广能力更优。其次,提出了一种不同于非极大值抑制(NMS)的多个精确定位回归框合并机制。精确定位回归框的获取以CNN检测过程输出的粗定位框作为输入。然后,对每个粗定位框应用CNN精确定位过程并获得对应的精确定位回归框。最后,对多个精确定位回归框进行合并,合并过程考虑了每个精确定位回归框的正确概率。更精确地说,最终的合并窗口是基于多个相关的精确定位回归框的概率加权求和方式获得。针对提出的两个改进,在国际上广泛使用的行人检测公共测试数据集ETH上进行了一系列实验。实验结果表明,所提的两个改进方法均能有效地提高系统的检测性能,在相同的测试条件下,融合两个改进的方法相比Fast R-CNN算法检测性能提升了5.06伞百分点。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !