1
针对已有方法不能很好地检测显著目标边界以及完整区域问题,提出一种基于超像素分割的图像显著性检测方法。首先,对原图像进行双边滤波降低局部颜色差异,使图像更加平滑、均匀,同时能够保留显著目标的边缘信息。然后通过计算局部窗口内像素的差异来实现显著目标边界的初步检测;滤波后的图像通过超像素分割将具有相同或相近颜色特征的像素划分到一个超像素区块内,在此基础上,综合考虑超像素区块的局部对比度与全局对比度以及空间分布关系来计算每个区块的显著值。最后,融合上述两部分的结果并通过引导滤波来对检测结果进行优化处理。在MSRA-IOOO公开数据集上与其他7种方法进行对比实验,所提方法的平均准确率为81. 57%,平均召回率为77. 13%,综合指标F-measure值为80. 50%。实验结果表明,提出的方法能够很好地检测出显著目标边界与内部信息,均匀突出了显著区域,证明了所提方法的有效性和鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !