1
目前,利用数据挖掘方法进行电力系统暂态稳定分析的研究,所用数据集普遍存在失稳样本少的样本不均衡问题,且挖掘模型的参数选择困难,缺乏对预测结果可信度进行评价。针对以上问题,文章提出用于暂稳预测的支持向量机(support vector machine,SVM)组合分类器及其可信度评价方法。首先采用改进bootstrap抽样得到多个类别均衡的数据集,利用随机特征子空间技术进一步压缩数据集;然后用压缩后的数据训练得到多个SVM分类器,各SVM的参数在经验范围内随机选取;最后,通过综合多个SVM的概率输出,得到组合分类器的预测结果,并对结果可信度进行评价。通过算例分析表明,改进Bootstrap算法能够明显减少对失稳样本的漏判,所提出的SVM组合分类器具有较高的预测准确度和可信度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !