1
针对传统 高维轨迹隐私保护模型抑制点数过多而导致的数据匿名性差及数据损失大的问题,提出了一种基于信息熵抑制的轨迹隐私保护方法。通过为轨迹数据建立基于熵的流量图,根据轨迹时空点信息熵大小设计合理的花费代价函数,局部抑制时空点以达到隐私保护的目的;同时改进了一种比较抑制前后流量图相似性的算法,并提出了一个衡量隐私收益的函数;最后,与LK-Local方法进行了轨迹隐私度与数据实用性的比较。在模拟地铁交通运输系统数据集上的实验结果表明,与LK-Local方法相比,在相同的匿名参数取值下,所提方法在相似性度量上提高了约27%,在数据损失度量上降低了约25%,在隐私收益上提高了约21%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !