1
针对低剂量计算机断层扫描( LDCT)重建图像中存在大量噪声的问题,提出了一种平稳小波的深度残差卷积神经网络( SWT-CNN)模型,可以从LDCT图像估计标准剂量计算机断层扫描(NDCT)图像。该模型在训练阶段,将LDCT图像经平稳小波(SWT)三级分解后的高频系数作为输入,将LDCT图像高频系数与NDCT图像高频系数相减得到残差系数作为标签,通过深度卷积神经网络( CNN)学习输入和标签之间的映射关系;在测试阶段,利用此映射关系即可从LDCT图像的高频系数中预测NDCT高频系数,最后通过平稳小波反变换(ISWT)重构预测的NDCT图像。实验采用50对大小为512×512的同一体模的常规剂量胸腔及腹腔扫描切片和投影域添加噪声后的重建图像作为数据集,其中45对作为训练集,其余5对作为测试集。将所提模型与效果较好的非局部降噪算法、K-奇异值分解( K-SVD)算法、匹配三维滤波(BM3D)算法及图像域CNN( Image-CNN)模型对比,实验结果表明,SWT-CNN模型预测的NDCT图像信噪比(PSNR)和结构相似性(SSIM)高,且均方根误差(RMSE)小于其他算法处理结果。该模型对于提高低剂量CT图像质量是可行且有效的。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !