资料介绍
在任何高速数字电路设计中,处理噪声和电磁干扰(EMI)都是一个必然的挑战。处理音视频和通信信号的数字信号处理(DSP)系统特别容易遭受这些干扰,设计时应该及早搞清楚潜在的噪声和干扰源,并及早采取措施将这些干扰降到最小。良好的规划将减少调试阶段中的大量时间和工作的反复,从而会节省总的设计时间和成本。
如今,最快的DSP的内部时钟速率高达数千兆赫,而发射和接收信号的频率高达几百兆赫。这些高速开关信号将会产生大量的噪声和干扰,将影响系统性能并产生电平很高的EMI。而DSP系统也变得更加复杂,比如具有音视频接口、LCD和无线通信功能,以太网和USB控制器、电源、振荡器、驱动控制以及其他各种电路,所有这些都将产生噪声,也都会受到相邻元器件的影响。音视频系统中特别容易产生这些问题,因为噪声会引起敏感的vwin 性能的下降,而对于离散的数据来说却不明显。
至关重要的是从设计的一开始就着手解决噪声和干扰问题。许多设计第一次都没有通过联邦通信委员会(FCC)的电磁兼容测试。如果在早期的设计中在低噪声和低干扰设计方法上花费一些时间,就会减少后续阶段的重新设计成本和产品的上市时间的延迟。因此,从设计的一开始,开发工程师就应该着眼于:
1. 选用在动态负载条件下具有低开关噪声的电源;
2. 将高速信号线间的串扰降到最小;
3. 高频和低频退耦;
4. 具有最小传输线效应的优良的信号完整性;
如果实现了这些目标,开发工程师就能有效避免噪声和EMI方面的缺陷。
噪声的影响及控制
对于高速DSP而言,降低噪声是最重要的设计准则之一。来自任何噪声源的过大的噪声,都会导致随机逻辑和锁相环(PLL)失效,从而降低可靠性。还会导致影响FCC认证测试的辐射干扰。此外,调试一个噪声很大的系统是极端困难的;因此,要消除噪声-如果能够彻底消除的话-则要求在电路板设计中花费大量的功夫。
在音视频系统中,即便是比较小的干扰,也会对最终产品的性能产生显著的影响。例如,音频捕获和回放系统中,性能将取决于所用的音频编解码的质量,电源的噪声,PCB布线质量,以及相邻电路间的串扰大小等。而且,采样时钟的稳定度也要求非常高,以避免出现不希望的杂音,如在回放和捕获过程中的“砰砰”声和“咔嚓”声。
在视频系统中,主要的挑战是消除色彩失真,60Hz“嗡嗡”声以及音频敲击声。这些对高质量视频的系统都是有害的,例如安全监控方面的应用。实际上,上述这些问题通常都与视频电路板的设计不良有关。具体包括:电源噪声传到视频的DAC输出上;音频回放引起电源的瞬变;音频信号耦合到了高阻抗的视频电路的信号线上。
这些典型的视频问题源包括:同步和像素时钟的过冲和欠冲;影响色彩的编解码和像素时钟的抖动;缺少端接电阻的图像失真;音视频隔离较差引起的闪烁。
音视频应用容易产生的噪声干扰问题,对于所有要求具有很低误码率的通信系统来说也是常见的。在通信系统中,辐射不仅仅产生EMI问题,还会阻塞其他的通信信道,从而引起虚假的信道检测。采用适当的电路板设计技术、屏蔽技术以及RF和混合的模拟/数字信号的隔离等技术,就可以解决这些挑战。
在高速DSP系统中有许多潜在的开关噪声源,包括:信号线间的串扰;传输线效应引起的反射;退耦电容不合适所引起的电压降低;高电感的电源线,振荡器和锁相环电路;开关电源;线形调整器不稳定性所引起的大容性负载;磁盘驱动器。
这些问题由电耦合和磁耦合共同产生。电耦合的产生是由于相邻信号和电路的寄生电容和互感所引起,而磁耦合的形成是由于相邻的信号线形成辐射天线所导致。如果辐射干扰足够强的话,将会导致能够摧毁其他系统的EMI问题。
当高速DSP系统中的噪声无法根本消除时,则应该将其减到最小。电子元器件内部都有噪声,故仔细地选择器件特性,并选用适当的器件是至关重要的。除了器件的正确选择外,还有两种通用的技术,即PCB布线和回路退耦可以帮助控制系统噪声。一个优秀的PCB布线将降低噪声通道产生的可能性。另外,还减小了能够传播到印制线和电流回路上的辐射,退耦避免相邻电路产生的噪声影响。最好的方法是从源头上滤除噪声,不过也可以使相邻的电路对噪声不敏感或者消除噪声的耦合通道。
现在我们讨论几种可以解决由系统噪声和EMI引起的许多常见问题的技术。
保持电流回路最短
低速信号电流沿阻抗最小,即最短的路径返回源端。而高速信号则是沿电感最小的路径返回:这样的最小的回路面积位于信号线的下面,如图1所示。
图1:高速信号与低速信号电流的比较。
因此,高速信号设计的目标之一就是为信号电流提供最小的电感回路。这可以利用电源平面和地平面来实现。电源平面通过形成自然的高频退耦电容将寄生电感降到最小。而地平面形成一个屏蔽面,即众所周知的镜像平面,能够提供最短的电流回路。
一种有效的PCB布线方法就是将电源平面和地平面靠在一起。这样形成了高平板电容和低阻抗,有利于降低噪声和辐射。为了屏蔽,最好的选择是:关键信号最好布到靠近地平面一边,而其余的则应靠近电源平面一侧。
在高速视频系统中,保持回路短的目的意味着视频地不能被隔离。而必须被隔离的音频地,绝不能在数据输入点处短接到数字地上,如图2所示。
图2:音频地隔离。
如今,最快的DSP的内部时钟速率高达数千兆赫,而发射和接收信号的频率高达几百兆赫。这些高速开关信号将会产生大量的噪声和干扰,将影响系统性能并产生电平很高的EMI。而DSP系统也变得更加复杂,比如具有音视频接口、LCD和无线通信功能,以太网和USB控制器、电源、振荡器、驱动控制以及其他各种电路,所有这些都将产生噪声,也都会受到相邻元器件的影响。音视频系统中特别容易产生这些问题,因为噪声会引起敏感的vwin 性能的下降,而对于离散的数据来说却不明显。
至关重要的是从设计的一开始就着手解决噪声和干扰问题。许多设计第一次都没有通过联邦通信委员会(FCC)的电磁兼容测试。如果在早期的设计中在低噪声和低干扰设计方法上花费一些时间,就会减少后续阶段的重新设计成本和产品的上市时间的延迟。因此,从设计的一开始,开发工程师就应该着眼于:
1. 选用在动态负载条件下具有低开关噪声的电源;
2. 将高速信号线间的串扰降到最小;
3. 高频和低频退耦;
4. 具有最小传输线效应的优良的信号完整性;
如果实现了这些目标,开发工程师就能有效避免噪声和EMI方面的缺陷。
噪声的影响及控制
对于高速DSP而言,降低噪声是最重要的设计准则之一。来自任何噪声源的过大的噪声,都会导致随机逻辑和锁相环(PLL)失效,从而降低可靠性。还会导致影响FCC认证测试的辐射干扰。此外,调试一个噪声很大的系统是极端困难的;因此,要消除噪声-如果能够彻底消除的话-则要求在电路板设计中花费大量的功夫。
在音视频系统中,即便是比较小的干扰,也会对最终产品的性能产生显著的影响。例如,音频捕获和回放系统中,性能将取决于所用的音频编解码的质量,电源的噪声,PCB布线质量,以及相邻电路间的串扰大小等。而且,采样时钟的稳定度也要求非常高,以避免出现不希望的杂音,如在回放和捕获过程中的“砰砰”声和“咔嚓”声。
在视频系统中,主要的挑战是消除色彩失真,60Hz“嗡嗡”声以及音频敲击声。这些对高质量视频的系统都是有害的,例如安全监控方面的应用。实际上,上述这些问题通常都与视频电路板的设计不良有关。具体包括:电源噪声传到视频的DAC输出上;音频回放引起电源的瞬变;音频信号耦合到了高阻抗的视频电路的信号线上。
这些典型的视频问题源包括:同步和像素时钟的过冲和欠冲;影响色彩的编解码和像素时钟的抖动;缺少端接电阻的图像失真;音视频隔离较差引起的闪烁。
音视频应用容易产生的噪声干扰问题,对于所有要求具有很低误码率的通信系统来说也是常见的。在通信系统中,辐射不仅仅产生EMI问题,还会阻塞其他的通信信道,从而引起虚假的信道检测。采用适当的电路板设计技术、屏蔽技术以及RF和混合的模拟/数字信号的隔离等技术,就可以解决这些挑战。
在高速DSP系统中有许多潜在的开关噪声源,包括:信号线间的串扰;传输线效应引起的反射;退耦电容不合适所引起的电压降低;高电感的电源线,振荡器和锁相环电路;开关电源;线形调整器不稳定性所引起的大容性负载;磁盘驱动器。
这些问题由电耦合和磁耦合共同产生。电耦合的产生是由于相邻信号和电路的寄生电容和互感所引起,而磁耦合的形成是由于相邻的信号线形成辐射天线所导致。如果辐射干扰足够强的话,将会导致能够摧毁其他系统的EMI问题。
当高速DSP系统中的噪声无法根本消除时,则应该将其减到最小。电子元器件内部都有噪声,故仔细地选择器件特性,并选用适当的器件是至关重要的。除了器件的正确选择外,还有两种通用的技术,即PCB布线和回路退耦可以帮助控制系统噪声。一个优秀的PCB布线将降低噪声通道产生的可能性。另外,还减小了能够传播到印制线和电流回路上的辐射,退耦避免相邻电路产生的噪声影响。最好的方法是从源头上滤除噪声,不过也可以使相邻的电路对噪声不敏感或者消除噪声的耦合通道。
现在我们讨论几种可以解决由系统噪声和EMI引起的许多常见问题的技术。
保持电流回路最短
低速信号电流沿阻抗最小,即最短的路径返回源端。而高速信号则是沿电感最小的路径返回:这样的最小的回路面积位于信号线的下面,如图1所示。
图1:高速信号与低速信号电流的比较。
因此,高速信号设计的目标之一就是为信号电流提供最小的电感回路。这可以利用电源平面和地平面来实现。电源平面通过形成自然的高频退耦电容将寄生电感降到最小。而地平面形成一个屏蔽面,即众所周知的镜像平面,能够提供最短的电流回路。
一种有效的PCB布线方法就是将电源平面和地平面靠在一起。这样形成了高平板电容和低阻抗,有利于降低噪声和辐射。为了屏蔽,最好的选择是:关键信号最好布到靠近地平面一边,而其余的则应靠近电源平面一侧。
在高速视频系统中,保持回路短的目的意味着视频地不能被隔离。而必须被隔离的音频地,绝不能在数据输入点处短接到数字地上,如图2所示。
图2:音频地隔离。
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 大功率环形电感在应用中出现不良的原因分析 0次下载
- EMI的诊断技巧与案例解析资源下载 45次下载
- 基于FPGA和DSP的机载图形显示系统 36次下载
- DSP系统中噪声的影响及控制资料下载
- 如何才能避免在DSP系统中出现噪声和EMI问题
- DSP在有源噪声控制中有怎么样的应用 11次下载
- DSP系统中出现噪声和EMI问题解决办法 2次下载
- 实例分析降低高速DSP系统设计中的电源噪声设计 0次下载
- 高速DSP系统设计的关键技术及其在电源噪声中的问题分析 8次下载
- 高频PCB设计中出现的干扰分析及对策 0次下载
- 高频PCB设计过程中出现电源噪声的解决办法 0次下载
- EMI噪声抑制学习指南
- 基于DSP的线列阵流噪声数据采集系统
- 如何避免在DSP系统中出现噪声和EMI问题
- 基于定点DSP的实时噪声消除系统
- SMT锡膏焊接中出现锡珠的因素有哪些? 292次阅读
- SMT贴片加工中出现元器件移位的原因有哪些? 304次阅读
- 如何预防贴片加工中出现元器件偏移现象? 389次阅读
- 深度解析如何管控SMT回流焊炉温曲线 1452次阅读
- 避免在PCB设计中出现电磁问题的7个技巧 338次阅读
- 棘手的FM频段传导EMI的缓解策略 807次阅读
- 如何预防贴片加工中出现元器件偏移的问题 4289次阅读
- DSP系统的降噪技术详细资料说明 7619次阅读
- EMI静噪滤波器抑制噪声的方法解析 2743次阅读
- 如何解决电路板中共模噪声引起的EMI问题 2393次阅读
- DSP系统中噪声和电磁干扰EMI的影响以及控制方法 1445次阅读
- DC/DC转换器传导EMI - 第2部分,噪声传播和滤波 3149次阅读
- 如何避免数字信号处理DSP系统中的噪声和EMI干扰 2823次阅读
- 如何处理DSP系统中的噪声和电磁干扰EMI 4389次阅读
- 针对DSP系统中噪声和EMI问题的解决方案分析 1341次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1489次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 91次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 9次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 3次下载 | 免费
- 8基于单片机的红外风扇遥控
- 0.23 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30319次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多