1 PyTorch教程4.3之基本分类模型-电子电路图,电子技术资料网站 - 德赢Vwin官网

德赢Vwin官网 App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示
vwin889
德赢Vwin官网 网>电子资料下载>电子资料>PyTorch教程4.3之基本分类模型

PyTorch教程4.3之基本分类模型

2023-06-05 | pdf | 0.13 MB | 次下载 | 免费

资料介绍

您可能已经注意到,在回归的情况下,从头开始的实现和使用框架功能的简洁实现非常相似。分类也是如此。由于本书中的许多模型都处理分类,因此值得添加专门支持此设置的功能。本节为分类模型提供了一个基类,以简化以后的代码。

import torch
from d2l import torch as d2l
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()
from functools import partial
import jax
import optax
from jax import numpy as jnp
from d2l import jax as d2l
No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
import tensorflow as tf
from d2l import tensorflow as d2l

4.3.1. Classifier_

我们在下面定义Classifier类。在中,validation_step我们报告了验证批次的损失值和分类准确度。我们为每个批次绘制一个更新num_val_batches这有利于在整个验证数据上生成平均损失和准确性。如果最后一批包含的示例较少,则这些平均数并不完全正确,但我们忽略了这一微小差异以保持代码简单。

class Classifier(d2l.Module): #@save
  """The base class of classification models."""
  def validation_step(self, batch):
    Y_hat = self(*batch[:-1])
    self.plot('loss', self.loss(Y_hat, batch[-1]), train=False)
    self.plot('acc', self.accuracy(Y_hat, batch[-1]), train=False)

We define the Classifier class below. In the validation_step we report both the loss value and the classification accuracy on a validation batch. We draw an update for every num_val_batches batches. This has the benefit of generating the averaged loss and accuracy on the whole validation data. These average numbers are not exactly correct if the last batch contains fewer examples, but we ignore this minor difference to keep the code simple.

class Classifier(d2l.Module): #@save
  """The base class of classification models."""
  def validation_step(self, batch):
    Y_hat = self(*batch[:-1])
    self.plot('loss', self.loss(Y_hat, batch[-1]), train=False)
    self.plot('acc', self.accuracy(Y_hat, batch[-1]), train=False)

We define the Classifier class below. In the validation_step we report both the loss value and the classification accuracy on a validation batch. We draw an update for every num_val_batches batches. This has the benefit of generating the averaged loss and accuracy on the whole validation data. These average numbers are not exactly correct if the last batch contains fewer examples, but we ignore this minor difference to keep the code simple.

We also redefine the training_step method for JAX since all models that will subclass Classifier later will have a loss that returns auxiliary data. This auxiliary data can be used for models with batch normalization (to be explained in Section 8.5), while in all other cases we will make the loss also return a placeholder (empty dictionary) to represent the auxiliary data.

class Classifier(d2l.Module): #@save
  """The base class of classification models."""
  def training_step(self, params, batch, state):
    # Here value is a tuple since models with BatchNorm layers require
    # the loss to return auxiliary data
    value, grads = jax.value_and_grad(
      self.loss, has_aux=True)(params, batch[:-1], batch[-1], state)
    l, _ = value
    self.plot("loss", l, train=True)
    return value, grads

  def validation_step(self, params, batch, state):
    # Discard the second returned value. It is used for training models
    # with BatchNorm layers since loss also returns auxiliary data
    l, _ = self.loss(params, batch[:-1], batch[-1], state)
    self.plot('loss', l, train=False)
    self.plot('acc', self.accuracy(params, batch[:-1], batch[-1], state),
         train=False)

We define the Classifier class below. In the validation_step we report both the loss value and the classification accuracy on a validation batch. We draw an update for every num_val_batches batches. This has the benefit of generating the averaged loss and accuracy on the whole validation data. These average numbers are not exactly correct if the last batch contains fewer examples, but we ignore this minor difference to keep the code simple.

class Classifier(d2l.Module): #@save
  """The base class of classification models."""
  def validation_step(self, batch):
    Y_hat = self(*batch[:-1])
    self.plot('loss', self.loss(Y_hat, batch[-1]), train=False)
    self.plot('acc', self.accuracy(Y_hat, batch[-1]), train=False)

默认情况下,我们使用随机梯度下降优化器,在小批量上运行,就像我们在线性回归的上下文中所做的那样。

@d2l.add_to_class(d2l.Module) #@save
def configure_optimizers(self):
  return torch.optim.SGD(self.parameters(), lr=self.lr)
@d2l.add_to_class(d2l.Module) #@save
def configure_optimizers(self):
  params = self.parameters()
  if isinstance(params, list):
    return d2l.SGD(params, self.lr)
  return gluon.Trainer(params, 'sgd', {'learning_rate': self.lr})
@d2l.add_to_class(d2l.Module) #@save
def configure_optimizers(self):
  return optax.sgd(self.lr)
@d2l.add_to_class(d2l.Module) #@save
def configure_optimizers(self):
  return tf.keras.optimizers.SGD(self.lr)

4.3.2. 准确性

给定预测概率分布y_hat,每当我们必须输出硬预测时,我们通常会选择预测概率最高的类别。事实上,许多应用程序需要我们做出选择。例如,Gmail 必须将电子邮件分类为“主要”、“社交”、“更新”、“论坛”或“垃圾邮件”。它可能会在内部估计概率,但最终它必须在类别中选择一个。

当预测与标签 class 一致时y,它们是正确的。分类准确度是所有正确预测的分数。尽管直接优化精度可能很困难(不可微分),但它通常是我们最关心的性能指标。它通常是基准测试中的相关数量因此,我们几乎总是在训练分类器时报告它。

准确度计算如下。首先,如果y_hat是一个矩阵,我们假设第二个维度存储每个类别的预测分数。我们使用argmax每行中最大条目的索引来获取预测类。然后我们将预测的类别与真实的元素进行比较y由于相等运算符== 对数据类型敏感,因此我们转换 的y_hat数据类型以匹配 的数据类型y结果是一个包含条目 0(假)和 1(真)的张量。求和得出正确预测的数量。

@d2l.add_to_class(Classifier) #@save
def accuracy(self, Y_hat, Y, averaged=True):
  """Compute the number of correct predictions."""
  Y_hat = Y_hat.reshape((-1, Y_hat.shape[-1]))
  preds = Y_hat.argmax(axis=1).type(Y.dtype)
  compare = (preds == Y.reshape(-1)).type(torch.float32)
  return compare.mean() if averaged else compare
@d2l.add_to_class(Classifier) #@save
def accuracy(self, Y_hat, Y, averaged=True):
  """Compute the number of correct predictions."""
  Y_hat = Y_hat.reshape((-1, Y_hat.shape[-1]))
  preds = Y_hat.argmax(axis=1).astype(Y.dtype)
  compare = (preds == Y.reshape(-1)).astype(np.float32)
  return compare.mean() if averaged else compare

@d2l.add_to_class(d2l.Module) #@save
def get_scratch_params(self):
  params = []
  for attr in dir(self):
    a = getattr(self, attr)
    if isinstance(a, np.ndarray):
      params.append(a)
    if isinstance(a, d2l.Module):
      params.extend(a.get_scratch_params())
  return params

@d2l.add_to_class(d2l.Module) #@save
def parameters(self):
  params = self.collect_params()
  return params if isinstance(params, gluon.parameter.ParameterDict) and

下载该资料的人也在下载 下载该资料的人还在阅读
更多 >

评论

查看更多

下载排行

本周

  1. 1山景DSP芯片AP8248A2数据手册
  2. 1.06 MB  |  532次下载  |  免费
  3. 2RK3399完整板原理图(支持平板,盒子VR)
  4. 3.28 MB  |  339次下载  |  免费
  5. 3TC358743XBG评估板参考手册
  6. 1.36 MB  |  330次下载  |  免费
  7. 4DFM软件使用教程
  8. 0.84 MB  |  295次下载  |  免费
  9. 5元宇宙深度解析—未来的未来-风口还是泡沫
  10. 6.40 MB  |  227次下载  |  免费
  11. 6迪文DGUS开发指南
  12. 31.67 MB  |  194次下载  |  免费
  13. 7元宇宙底层硬件系列报告
  14. 13.42 MB  |  182次下载  |  免费
  15. 8FP5207XR-G1中文应用手册
  16. 1.09 MB  |  178次下载  |  免费

本月

  1. 1OrCAD10.5下载OrCAD10.5中文版软件
  2. 0.00 MB  |  234315次下载  |  免费
  3. 2555集成电路应用800例(新编版)
  4. 0.00 MB  |  33566次下载  |  免费
  5. 3接口电路图大全
  6. 未知  |  30323次下载  |  免费
  7. 4开关电源设计实例指南
  8. 未知  |  21549次下载  |  免费
  9. 5电气工程师手册免费下载(新编第二版pdf电子书)
  10. 0.00 MB  |  15349次下载  |  免费
  11. 6数字电路基础pdf(下载)
  12. 未知  |  13750次下载  |  免费
  13. 7电子制作实例集锦 下载
  14. 未知  |  8113次下载  |  免费
  15. 8《LED驱动电路设计》 温德尔著
  16. 0.00 MB  |  6656次下载  |  免费

总榜

  1. 1matlab软件下载入口
  2. 未知  |  935054次下载  |  免费
  3. 2protel99se软件下载(可英文版转中文版)
  4. 78.1 MB  |  537798次下载  |  免费
  5. 3MATLAB 7.1 下载 (含软件介绍)
  6. 未知  |  420027次下载  |  免费
  7. 4OrCAD10.5下载OrCAD10.5中文版软件
  8. 0.00 MB  |  234315次下载  |  免费
  9. 5Altium DXP2002下载入口
  10. 未知  |  233046次下载  |  免费
  11. 6电路仿真软件multisim 10.0免费下载
  12. 340992  |  191187次下载  |  免费
  13. 7十天学会AVR单片机与C语言视频教程 下载
  14. 158M  |  183279次下载  |  免费
  15. 8proe5.0野火版下载(中文版免费下载)
  16. 未知  |  138040次下载  |  免费