1
完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > VSR
VSR是压敏电阻器的简称,当其两端所加电压在标称值内时,其电阻几乎为无穷大,当其两端所加电压稍微超过标称值时,其电阻急剧下降。本章详细介绍了VSR型号,VSR符号,VSR型号的含义,VSR型号及参数,VSR工作原理等内容。
VSR 是压敏电阻器的简称,当其两端所加电压在标称值内时,其电阻几乎为无穷大,当其两端所加电压稍微超过标称值时,其电阻急剧下降。被应用于电路中作为保护器件。
VSR= voltage source rectifier 电压型整流器
和csr ( current source rectifier )相对应。
电压型PWM整流器(Voltage Source Rectifer-VSR)最显著拓扑特征就是直流侧采用电容进行直流储能,从而使VSR直流侧呈低阻抗的电压源特性。
VSR 是压敏电阻器的简称,当其两端所加电压在标称值内时,其电阻几乎为无穷大,当其两端所加电压稍微超过标称值时,其电阻急剧下降。被应用于电路中作为保护器件。
VSR= voltage source rectifier 电压型整流器
和csr ( current source rectifier )相对应。
电压型PWM整流器(Voltage Source Rectifer-VSR)最显著拓扑特征就是直流侧采用电容进行直流储能,从而使VSR直流侧呈低阻抗的电压源特性。
常见的几种拓扑结构包括:
1.单相半桥、全桥VSR拓扑结构
2.三相半桥、全桥VSR拓扑结构
3.三相三电平VSR拓扑结构
4.基于软开关调制的VSR拓扑结构
VSR压敏电阻的使用方法和注意事项
电路设计中需要了解的参数: 1、压敏电压UN(U1mA):通常以在压敏电阻上通过1mA直流电流时的电压来表示其是否导通的标志电压,这个电压就称为压敏电压UN.压敏电压也常用符号U1mA表示。压敏电压的误差范围一般是±10%.在试验和实际使用中,通常把压敏电压从正常值下降10%作为压敏电阻失效的判据。
2、最大持续工作电压UC:指压敏电阻能长期承受的最大交流电压(有效值)Uac或最大直流电压Udc.一般Uac≈0.64U1mA,Udc≈0.83U1mA
3、最大箝位电压(限制电压)VC:最大箝位电压值是指给压敏电阻施加规定的8/20μs波冲击电流IX(A)时压敏电阻上呈现的电压。
4、漏电流Il:给压敏电阻施加最大直流电压Udc时流过的电流。测量漏电流时,通常给压敏电阻加上Udc=0.83U1mA的电压(有时也用0.75U1mA)。一般要求静态漏电流Il≤20μA(也有要求≤10μA的)。在实际使用中,更关心的不是静态漏电流值本身的大小,而是它的稳定性,即在冲击试验后或在高温条件下的变化率。在冲击试验后或在高温条件下其变化率不超过一倍,即认为是稳定的
方法及步骤
1、压敏电压的计算:
一般可用下式计算:
U1mA=KUac 式中:K为与电源质量有关的系数,一般取K=(2~3),电源质量较好的城市可取小些,电源质量较差的农村(特别是山区)可取大些。Uac为交流电源电压有效值。对于220V~240V交流电源防雷器,应选用压敏电压为470V~620V的压敏电阻较合适。选用压敏电压高一点的压敏电阻,可以降低故障率,延长使用寿命,但残压略有增大。
2、标称放电电流的计算:
压敏电阻的标称放电电流应大于要求承受的浪涌电流或每年可能出现的最大浪涌电流。标称放电电流应按压敏电阻浪涌寿命次数定额曲线中冲击10次以上的数值进行计算,约为最大冲击通流量的30%(即0.3 IP)左右
3、压敏电阻的并联:
当一个压敏电阻满足不了标称放电电流的要求时,应采用多个压敏电阻并联使用。有时为了降低限制电压,即使标称放电电流满足要求也采用多个压敏电阻并联。要特别注意的是,压敏电阻并联使用时,一定要严格挑选参数一致的(例如:ΔU1mA≤3V,Δα≤3)进行配对,以保证电流的均匀分配。
注意事项
温度保险管应与压敏电阻有良好的热耦合,当压敏电阻失效(高阻抗短路)时,它所产生的热量把温度保险管熔断,使失效的压敏电阻与电路分离,确保设备的安全。当较高的工频暂时过电压作用在压敏电阻上时,可能使压敏电阻瞬间击穿短路(低阻抗短路),而温度保险管还来不及熔断,还可能起火。为避免这种现象发生,可在每个压敏电阻上再串联一个耐冲击工频保险丝(单用工频保险丝则在老化失效时可能不熔断)
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |