对谐振转换器的效益
二极体从导通状态变化至反向阻断状态的转换过程称为反向恢復。在二极体正向导通期间,电荷被储存在二极体的P-N结中。当施加反向电压时,所储存的电荷会被消除,从而返回到阻断状态。可通过两种现象消除储存的电荷:大反向电流的流过和重组(recombination)。在此过程中,二极体中产生大反向恢復电流。就MOSFET寄生二极体来说,某些反向恢復电流就在N+源极下流动。图3显示了在寄生二极体反向恢復期间MOSFET的失效波形。对于竞争产品A,失效就发生在电流水準达到最大反向恢復电流后,即dv/dt为6.87V/ns。这意味着峰值电流触发了寄生双极结晶体管(BJT),但UniFET II MOSFET系列则能避免,直到dv/dt达到更高的14.32V/ns。
图4显示了UniFET II MOSFET系列坚固的寄生二极体如何在输出短路下提高转换器的可靠性。在输出短路后,工作模式从ZVS转变为ZCS。由于Qrr更小,UniFET II MOSFET系列的电流突波降低了很多,而最重要的是,元件并未失效。
转换器的其它异常模式可能发生在启动阶段。图5显示了启动阶段的开关电流波形。电流突波的高峰值超过27A,是由大的反向恢復电流所引起的。它可以触发控制IC的保护功能。相反地,UniFET II MOSFET系列则不会出现大的电流突波。
为了比较UniFET II MOSFET系列和竞争产品的功率转换效率,我们设计了一款150W的LLC谐振半桥转换器。效率测试结果请参见图6在整个输入电压範围内,系统的效率高于竞争的MOSFET系统。效率较高的主要塬因是具有更低的Qg和Eoss,从而减少了关断损耗和输出电容性损耗。
全新功率MOSFET系列结合了扎实的本质寄生二极体之性能和快速开关特性,目的是在谐振转换器应用中达到更好的可靠性和效率。由于降低了闸极充电电荷和输出电容的储能,降低了驱动损耗,开关效率也因而提升。UniFET II MOSFET系列以最低成本为设计人员提供了更好的可靠性和效率。