晶体管全称双极型三极管(Bipolar junction transistor,BJT)又称晶体三极管,简称三极管,是一种固体半导体器件,可用于检波、整流、放大、开关、稳压、信号调制等。晶体管作为一种可变开关。基于输入的电压,控制流出的电流,因此晶体管可用作电流的开关。和一般机械开关(如Relay、switch)不同的是:晶体管是利用电讯号来控制,而且开关速度非常快,在实验室中的切换速度可达100吉赫兹以上。
晶体管按其结构分为NPN型和PNP型两类。晶体管结构与符号如图所示。它们都有三个区:集电区、基区、发射区;从这三个区引出的电极分别称为集电极c(Collector)、基极b(Base)和发射极e(Emitter)。两个PN结:发射区与基区之间的PN结称为发射结Je,基区与集电区之间的PN结称为集电结Je。
两种管子的电路符号的发射极箭头方向不同,箭头方向表示发射结正偏时发射极电流的实际方向。
应当指出,晶体管绝不是两个PN结的简单连接。它采用了以下制造工艺:基区很薄且掺杂浓度低,发射区掺杂浓度高,集电结面积比发射结的面积大等。这些都是为了保证晶体管具有较好的电流放大作用。
由于晶体管在结构上有这些特点,所以不能用两个二极管背向连接来说明晶体管的作用,在使用时发射极和集电极一般不能互换。
晶体管的主要参数:
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
电流放大系数
电流放大系数也称电流放大倍数,用来表示晶体管放大能力。根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1、直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2、交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
频率特性
晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1、特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
2、最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
集电极最大电流ICM
集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
1、集电极——集电极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
2、基极—— 基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
3、发射极——发射极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
反向电流
晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。
1.集电极——基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
2.集电极——发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。
晶体管的开关特性:
控制大功率现在的功率晶体管能控制数百千瓦的功率,使用功率晶体管作为开关有很多优点,主要是;
(1)容易关断,所需要的辅助元器件少;
(2)开关迅速,能在很高的频率下工作;
(3)可得到的器件耐压范围从100V到700V,应有尽有。
几年前,晶体管的开关能力还小于10kW。目前,它已能控制高达数百千瓦的功率。这主要归功于物理学家、技术人员和电路设计人员的共同努力,改进了功率晶体管的性能。如:
(1)开关晶体管有效芯片面积的增加;
(2)技术上的简化;
(3)晶体管的复合——达林顿;
(4)用于大功率开关的基极驱动技术的进步。
直接工作在整流380V市电上的晶体管功率开关
晶体管复合(达林顿)和并联都是有效地增加晶体管开关能力的方法。在这样的大功率电路中,存在的主要问题是布线。很高的开关速度能在很短的连接线上产生相当高的干扰电压。
简单和优化的基极驱动造就的高性能
今日的基极驱动电路不仅驱动功率晶体管,还保护功率晶体管,称之为“非集中保护” (和集中保护对照)。集成驱动电路的功能包括:
(1)开通和关断功率开关;
(2)监控辅助电源电压;
(3)限制最大和最小脉冲宽度;
(4)热保护;
(5)监控开关的饱和压降。